, Volume 63, Issue 11, pp 703–713 | Cite as

Characterization of MHC class I transcripts of a Malaysian cynomolgus macaque by high-throughput pyrosequencing and EST libraries

  • Alice Aarnink
  • Pol-André Apoil
  • Ichiro Takahashi
  • Naoki Osada
  • Antoine BlancherEmail author
Original Paper


We characterized the repertoire of MHC class I transcripts of a Malaysian cynomolgus macaque by the study of EST libraries derived from the mRNA extracted from six tissues (thymus, spleen, bone marrow, liver, heart and pancreas). The MHC class I transcripts present in a lymph node of the same animal were characterized by pyrosequencing of amplified cDNA fragments (515 bp from exon 2 to the beginning of exon 4). All pyrosequence consensus sequences, but three corresponding to rare transcripts, were identical to those obtained from EST libraries. In total, we characterized 19 classical class I transcripts in the Malaysian macaque studied here. By means of high-throughput sequencing of exon 2 amplified from the genomic DNA (190 bp), we characterized 38 classical class I genes in the genome of this animal. By comparison, using the same method, we found 23 classical class I genes in the genome of a MHC homozygous Mauritian animal (H2/H2). All these results suggested that the Malaysian animal was most probably heterozygous. This study reveals that the high-throughput pyrosequencing allows not only to characterize the MHC class I transcripts but also to estimate the number of MHC class I genes in the genome of cynomolgus macaque.


MHC transcriptoma EST Pyrosequencing Macaca fascicularis 



We thank all technicians of the Toulouse Laboratory of Immunogenetics — Béatrice Atlan, Audrey Dauba, Stéphanie Despiau-Schiavinato and Sylvie Hébrard — for their excellent technical assistance. The 454 pyrosequencing was performed with the support of Plate-forme Génomique (Genotoul, Toulouse, France).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

251_2011_550_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 Numbers of reads obtained by pyro-sequencing. (DOC 31 kb)
251_2011_550_MOESM2_ESM.doc (56 kb)
Supplementary Table 2 Exon 2 of MHC class I genes obtained by blast in a single haplotypic sequence of Mamu class I region deposited by Shiina et al. (AB128049 accession genbank number). (DOC 56 kb)
251_2011_550_MOESM3_ESM.doc (51 kb)
Supplementary Table 3 Characterization of MHC class II transcripts of a Malaysian macaque by EST libraries number of EST. The consensus sequences were obtained with 97 % identity in the full length coding region. (DOC 51 kb)


  1. Aarnink A, Dereuddre-Bosquet N, Vaslin B, Le Grand R, Winterton P, Apoil PA, Blancher A (2011) Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque. Immunogenetics 63:267–274Google Scholar
  2. Ansari AA, Sundstrom JB, Runnels H, Jensen P, Kanter K, Mayne A, Herskowitz A (1994) The absence of constitutive and induced expression of critical cell-adhesion molecules on human cardiac myocytes. Its role in transplant rejection. Transplantation 57:942–949PubMedCrossRefGoogle Scholar
  3. Budde ML, Wiseman RW, Karl JA, Hanczaruk B, Simen BB, O’Connor DH (2010) Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics 62:773–780PubMedCrossRefGoogle Scholar
  4. Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ (1984) The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation 38:287–292PubMedCrossRefGoogle Scholar
  5. Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE (2004) Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res 14:1501–1415PubMedCrossRefGoogle Scholar
  6. Kato S, Ohtoko K, Ohtake H, Kimura T (2005) Vector-capping: a simple method for preparing a high-quality full-length cDNA library. DNA Res 12:53–62PubMedCrossRefGoogle Scholar
  7. Li Z, Zhao L, Sandler S, Karlsson FA (2000) Expression of pancreatic islet MHC class I, insulin, and ICA 512 tyrosine phosphatase in low-dose streptozotocin-induced diabetes in mice. J Histochem Cytochem 48:761–767PubMedCrossRefGoogle Scholar
  8. Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:171–174PubMedCrossRefGoogle Scholar
  9. Mee ET, Badhan A, Karl JA, Wiseman RW, Cutler K, Knapp LA, Almond N, O'Connor DH, Rose NJ (2009) MHC haplotype frequencies in a UK breeding colony of Mauritian cynomolgus macaques mirror those found in a distinct population from the same geographic origin. J Med Primatol 38:1–14PubMedCrossRefGoogle Scholar
  10. Metzger R, Mempel T, Joppich I, Till H (2000) Organ-specific distribution of major histocompatibility antigens in rats. Pediatr Surg Int 16:285–292PubMedCrossRefGoogle Scholar
  11. O’Leary CE, Wiseman RW, Karl JA, Bimber BN, Lank SM, Tuscher JJ, O'Connor DH (2009) Identification of novel MHC class I sequences in pig-tailed macaques by amplicon pyrosequencing and full-length cDNA cloning and sequencing. Immunogenetics 61:689–701PubMedCrossRefGoogle Scholar
  12. Osada N, Hirata M, Tanuma R, Suzuki Y, Sugano S, Terao K, Kusuda J, Kameoka Y, Hashimoto K, Takahashi I (2009) Collection of Macaca fascicularis cDNAs derived from bone marrow, kidney, liver, pancreas, spleen, and thymus. BMC Res Notes 2:199Google Scholar
  13. Shiina T, Ota M, Shimizu S, Katsuyama Y, Hashimoto N, Takasu M, Anzai T, Kulski JK, Kikkawa E, Naruse T, Kimura N, Yanagiya K, Watanabe A, Hosomichi K, Kohara S, Iwamoto C, Umehara Y, Meyer A, Wanner V, Sano K, Macquin C, Ikeo K, Tokunaga K, Gojobori T, Inoko H, Bahram S (2006) Rapid evolution of major histocompatibility complex class I genes in primates generates new disease alleles in humans via hitchhiking diversity. Genetics 173:1555–1570PubMedCrossRefGoogle Scholar
  14. So SK, Platt JL, Ascher NL, Snover DC (1987) Increased expression of class I major histocompatibility complex antigens on hepatocytes in rejecting human liver allografts. Transplantation 43:79–85PubMedCrossRefGoogle Scholar
  15. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  16. Watanabe A, Shiina T, Shimizu S, Hosomichi K, Yanagiya K, Kita YF, Kimura T, Soeda E, Torii R, Ogasawara K, Kulski JK, Inoko H (2007) A BAC-based contig map of the cynomolgus macaque (Macaca fascicularis) major histocompatibility complex genomic region. Genomics 89:402–412PubMedCrossRefGoogle Scholar
  17. Wiseman RW, Wojcechowskyj JA, Greene JM, Blasky AJ, Gopon T, Soma T, Friedrich TC, O’Connor SL, O’Connor DH (2007) Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. J Virol 81:349–361PubMedCrossRefGoogle Scholar
  18. Wiseman RW, Karl JA, Bimber BN, O’Leary CE, Lank SM, Tuscher JJ, Detmer AM, Bouffard P, Levenkova N, Turcotte CL, Szekeres E Jr, Wright C, Harkins T, O’Connor DH (2009) Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 15:1322–1326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alice Aarnink
    • 1
  • Pol-André Apoil
    • 1
  • Ichiro Takahashi
    • 2
  • Naoki Osada
    • 3
  • Antoine Blancher
    • 1
    Email author
  1. 1.Laboratoire d’Immunogénétique moléculaire, EA 3034, Faculté de Médecine PurpanUniversité Paul Sabatier, Toulouse 3, IFR150 (INSERM), CHU de ToulouseToulouse cedex 9France
  2. 2.Department of Biomedical ResourcesNational Institute of Biomedical InnovationIbarakiJapan
  3. 3.Division of Evolutionary GeneticsNational Institute of GeneticsMishimaJapan

Personalised recommendations