, Volume 63, Issue 7, pp 409–415

Novel and functional regulatory SNPs in the promoter region of FOXP3 gene in a Gabonese population

  • Susanne A. Hanel
  • Velavan TP
  • Peter G. Kremsner
  • Jürgen F. J. Kun
Original Paper


Parasites exert a selection pressure on their hosts and are accountable for driving diversity within gene families and immune gene polymorphisms in a host population. The overwhelming response of regulatory T cells during infectious challenges directs the host immune system to lose the ability to mount parasite specific T cell responses. The underlying idea of this study is that regulatory single nucleotide polymorphism (SNPs) can cause significant changes in gene expression in functional immune genes. We identified and investigated regulatory SNPs in the promoter region of the FOXP3 gene in a group of Gabonese individuals exposed to a variety of parasitic infections. We identified two novel and one promoter variants in 40 individual subjects. We further validated these promoter variants for their allelic gene expression using transient transfection assays. Two promoter variants, −794 (C/G) and the other variant −734/−540 (C/T) revealed a significant higher expression of the reporter gene at basal level in comparison to the major allele. The identification of SNPs that modify function in the promoter regions could provide a basis for studying parasite susceptibility in association studies.


FOXP3 Polymorphism Transfection Tregs 


  1. Bacchetta R, Gambineri E, Roncarolo MG (2007) Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol 120:227–235PubMedCrossRefGoogle Scholar
  2. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  3. Bassuny WM, Ihara K, Sasaki Y, Kuromaru R, Kohno H, Matsuura N, Hara T (2003) A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics 55:149–156PubMedCrossRefGoogle Scholar
  4. Belkaid Y (2007) Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7:875–888PubMedCrossRefGoogle Scholar
  5. Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360PubMedCrossRefGoogle Scholar
  6. Belkaid Y, Blank RB, Suffia I (2006) Natural regulatory T cells and parasites: a common quest for host homeostasis. Immunol Rev 212:287–300PubMedCrossRefGoogle Scholar
  7. Coffer PJ, Burgering BMT (2004) Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4:889–899PubMedCrossRefGoogle Scholar
  8. Gao L, Li K, Li F, Li H, Liu L, Wang L, Zhang ZD, Gao TW, Liu YF (2010) Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J Dermatol Sci 57:51–56PubMedCrossRefGoogle Scholar
  9. Gavin MA, Torgerson TR, Houston E, deRoos P, Ho WY, Stray-Pedersen A, Ocheltree EL, Greenberg PD, Ochs HD, Rudensky AY (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103:6659–6664PubMedCrossRefGoogle Scholar
  10. Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR, O'Donovan MC (2003) Functional analysis of human promoter polymorphisms. Hum Mol Genet 12:2249–2254PubMedCrossRefGoogle Scholar
  11. Hori S (2010) c-Rel: a pioneer in directing regulatory T-cell lineage commitment? Eur J Immunol 40:664–667PubMedCrossRefGoogle Scholar
  12. Hromas R, Collins SJ, Hickstein D, Raskind W, Deaven LL, Ohara P, Hagen FS, Kaushansky K (1991) A retinoic acid-responsive human zinc finger gene, Mzf-1, preferentially expressed in myeloid cells. J Biol Chem 266:14183–14187PubMedGoogle Scholar
  13. Juliger S, Bongartz M, Luty AJF, Kremsner PG, Kun JFJ (2003) Functional analysis of a promoter variant of the gene encoding the interferon-gamma receptor chain I. Immunogenetics 54:675–680PubMedGoogle Scholar
  14. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551PubMedGoogle Scholar
  15. Lan Y, Tang XS, Qin J, Wu J, Qin JM (2010) Association of transcription factor FOXP3 gene polymorphism with genetic susceptibility to systematic lupus erythematosus in Guangxi Zhuang population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 27(4):433–436PubMedGoogle Scholar
  16. Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB, Chatila TA (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359–368PubMedCrossRefGoogle Scholar
  17. Long MX, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappa B modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931PubMedCrossRefGoogle Scholar
  18. Maizels RM (2009) Parasite immunomodulation and polymorphisms of the immune system. J Biol 8:62PubMedCrossRefGoogle Scholar
  19. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, Maclsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935PubMedCrossRefGoogle Scholar
  20. Morris JF, Rauscher FJ, Davis B, Klemsz M, Xu DW, Tenen D, Hromas R (1995) The myeloid zinc-finger gene, Mzf-1, regulates the Cd34 promoter in-vitro. Blood 86:3640–3647PubMedGoogle Scholar
  21. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689PubMedCrossRefGoogle Scholar
  22. Park O, Grishina I, Leung P, Gershwin M, Prindiville T (2005) Analysis of the Foxp3/Scurfin gene in Crohn’s disease. Ann NY Acad Sci 1051:218–228PubMedCrossRefGoogle Scholar
  23. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386Google Scholar
  24. Sakaguchi S (2003) Regulatory T cells: mediating compromises between host and parasite. Nat Immunol 4:10–11PubMedCrossRefGoogle Scholar
  25. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells—a brief history and perspective. Eur J Immunol 37:S116–S123PubMedCrossRefGoogle Scholar
  26. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E, Prakken BJ, Coffer PJ (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115:965–974PubMedCrossRefGoogle Scholar
  27. Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, Andersen RF, Bejon P, Thompson F, Dunachie SJ, Edele F, de Souza JB, Sinden RE, Gilbert SC, Riley EM, Hill AVS (2005) Upregulation of TGF-beta, FOXP3, and CD4(+)CD25(+) regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23:287–296PubMedCrossRefGoogle Scholar
  28. Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA (2009) The development and function of regulatory T cells. Cell Mol Life Sci 66:2603–2622PubMedCrossRefGoogle Scholar
  29. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Susanne A. Hanel
    • 1
  • Velavan TP
    • 1
  • Peter G. Kremsner
    • 1
    • 2
  • Jürgen F. J. Kun
    • 1
  1. 1.Institute for Tropical MedicineUniversity of TübingenTübingenGermany
  2. 2.Medical Research UnitAlbert Schweitzer HospitalLambarénéGabon

Personalised recommendations