, Volume 63, Issue 4, pp 235–253 | Cite as

Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation

  • Tiehui Wang
  • Wenshu Huang
  • Maria M. Costa
  • Samuel A. M. Martin
  • Christopher J. SecombesEmail author
Original Paper


Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.


Rainbow trout IL-4Rα IL-13Rα1 IL-13Rα2 Expression Modulation 



This work was supported financially by Contract No. 513692 (Aquafirst) and 007103 (IMAQUANIM—Improved Immunity of Aquacultured Animals) from the European Commission. Dr Costa was supported by an Ángeles Alvariño postdoctoral contract from the Consejo Superior de Investigaciones Científicas (CSIC) and the Xunta de Galicia.

Supplementary material

251_2010_508_MOESM1_ESM.pdf (118 kb)
ESM 1 (PDF 117 kb)


  1. Akashi M, Shaw G, Hachiya M, Elstner E, Suzuki G, Koeffler P (1994) Number and location of AUUUA motifs: role in regulating transiently expressed RNAs. Blood 83:3182–3187PubMedGoogle Scholar
  2. Andrews AL, Holloway JW, Holgate ST, Davies DE (2006) IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol 176:7456–7461PubMedGoogle Scholar
  3. Arima K, Sato K, Tanaka G, Kanaji S, Terada T, Honjo E, Kuroki R, Matsuo Y, Izuhara K (2005) Characterization of the interaction between interleukin-13 and interleukin-13 receptors. J Biol Chem 280:24915–24922PubMedCrossRefGoogle Scholar
  4. Avery S, Rothwell L, Degen WDJ, Schijns VEJC, Young J, Kaufman J, Kaiser P (2004) Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interferon Cytokine Res 24:600–610PubMedGoogle Scholar
  5. Baumgartner JW, Wells CA, Chen CM, Waters MJ (1994) The role of the WSXWS equivalent motif in growth hormone receptor function. J Biol Chem 269:29094–29101PubMedGoogle Scholar
  6. Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938PubMedCrossRefGoogle Scholar
  7. Bird S, and Secombes CJ (2006) Danio rerio partial mRNA for interleukin-4. GenBank accession no. AM403245Google Scholar
  8. Boulay JL, O'Shea JJ, Paul WE (2003) Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 19:159–163PubMedCrossRefGoogle Scholar
  9. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29CrossRefGoogle Scholar
  10. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  11. David M, Ford D, Bertoglio J, Maizel AL, Pierre J (2001) Induction of the IL-13 receptor alpha2-chain by IL-4 and IL-13 in human keratinocytes: involvement of STAT6, ERK and p38 MAPK pathways. Oncogene 20:6660–6668PubMedCrossRefGoogle Scholar
  12. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  13. Ganassin RC, Bols NC (1998) Development of a monocyte/macrophage-like cell line, RTS11, from rainbow trout spleen. Fish Shellfish Immunol 8:457–476CrossRefGoogle Scholar
  14. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: JM Walker (ed) The proteomics protocols handbook. Humana, Totowa, pp 571–607.Google Scholar
  15. Hage T, Sebald W, Reinemer P (1999) Crystal structure of the interleukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell 97:271–281PubMedCrossRefGoogle Scholar
  16. Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111:677–690; quiz 691Google Scholar
  17. Hilton DJ, Watowich SS, Katz L, Lodish HF (1996) Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J Biol Chem 271:4699–4708PubMedCrossRefGoogle Scholar
  18. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 373:166Google Scholar
  19. Holland JW, Karim A, Wang T, Alnabulsi A, Scott J, Collet B, Mughal MS, Secombes CJ, Bird S (2010) Molecular cloning and characterization of interferon regulatory factors 4 and 8 (IRF-4 and IRF-8) in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 29:157–166Google Scholar
  20. Ito T, Suzuki S, Kanaji S, Shiraishi H, Ohta S, Arima K, Tanaka G, Tamada T, Honjo E, Garcia KC, Kuroki R, Izuhara K (2009) Distinct structural requirements for interleukin-4 (IL-4) and IL-13 binding to the shared IL-13 receptor facilitate cellular tuning of cytokine responsiveness. J Biol Chem 284:24289–24296PubMedCrossRefGoogle Scholar
  21. Junttila IS, Mizukami K, Dickensheets H, Meier-Schellersheim M, Yamane H, Donnelly RP, Paul WE (2008) Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac regulates relative cytokine sensitivity. J Exp Med 205:2595–2608PubMedCrossRefGoogle Scholar
  22. Kioi M, Seetharam S, Puri RK (2006) N-linked glycosylation of IL-13R alpha2 is essential for optimal IL-13 inhibitory activity. FASEB J 20:2378–2380PubMedCrossRefGoogle Scholar
  23. Koop BF, von Schalburg KR, Leong J, Walker N, Lieph R, Cooper GA, Robb A, Beetz-Sargent M, Holt RA, Moore R, Brahmbhatt S, Rosner J, Rexroad CE 3rd, McGowan CR, Davidson WS (2008) A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics 9:545PubMedCrossRefGoogle Scholar
  24. LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC (2008) Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132:259–272PubMedCrossRefGoogle Scholar
  25. Lee LE, Clemons JH, Bechtel DG, Caldwell SJ, Han KB, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9:279–294PubMedCrossRefGoogle Scholar
  26. Li JH, Shao JZ, Xiang LX, Wen Y (2007) Cloning, characterization and expression analysis of pufferfish interleukin-4 cDNA: the first evidence of Th2-type cytokine in fish. Mol Immunol 44:2078–2086PubMedCrossRefGoogle Scholar
  27. Liongue C, Ward AC (2007) Evolution of class I cytokine receptors. BMC Evol Biol 7:120PubMedCrossRefGoogle Scholar
  28. Lockyer AE, Jones CS, Noble LR, Verspoor E, Holland J, Secombes CJ (2001) Isolation and characterisation of a putative interleukin 13 receptor a2 sequence from rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11:541–546PubMedCrossRefGoogle Scholar
  29. Lupardus PJ, Birnbaum ME, Garcia KC (2010) Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Ralpha2. Structure 18:332–342Google Scholar
  30. Marsden RL, McGuffin LJ, Jones DT (2002) Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci 11:2814–2824PubMedCrossRefGoogle Scholar
  31. Murakami M, Narazaki M, Hibi M, Yawata H, Yasukawa K, Hamaguchi M, Taga T, Kishimoto T (1991) Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA 88:11349–11353PubMedCrossRefGoogle Scholar
  32. Murray PJ (2007) The JAK–STAT signaling pathway: input and output integration. J Immunol 178:2623–2629PubMedGoogle Scholar
  33. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738PubMedCrossRefGoogle Scholar
  34. Ohtani M, Hayashi N, Hashimoto K, Nakanishi T, Dijkstra JM (2008) Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics 60:383–397PubMedCrossRefGoogle Scholar
  35. Orchansky PL, Kwan R, Lee F, Schrader JW (1999) Characterization of the cytoplasmic domain of interleukin-13 receptor-alpha. J Biol Chem 274:20818–20825PubMedCrossRefGoogle Scholar
  36. Osborne J (2002) Notes on the use of data transformations. Practical Assessment, Research & Evaluation, 8, 6Google Scholar
  37. Rahaman SO, Sharma P, Harbor PC, Aman MJ, Vogelbaum MA, Haque SJ (2002) IL-13R(alpha)2, a decoy receptor for IL-13 acts as an inhibitor of IL-4-dependent signal transduction in glioblastoma cells. Cancer Res 62:1103–1109PubMedGoogle Scholar
  38. Ramalingam TR, Pesce JT, Sheikh F, Cheever AW, Mentink-Kane MM, Wilson MS, Stevens S, Valenzuela DM, Murphy AJ, Yancopoulos GD, Urban JF Jr, Donnelly RP, Wynn TA (2008) Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol 9:25–33PubMedCrossRefGoogle Scholar
  39. Reimer T, Brcic M, Schweizer M, Jungi TW (2008) poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol 83:1249–1257PubMedCrossRefGoogle Scholar
  40. Rogan DF, Cousins DJ, Santangelo S, Ioannou PA, Antoniou M, Lee TH, Staynov DZ (2004) Analysis of intergenic transcription in the human IL-4/IL-13 gene cluster. Proc Natl Acad Sci USA 101:2446–2451PubMedCrossRefGoogle Scholar
  41. Schirmer K, Chan AG, Greenberg BM, Dixon DG, Bols NC (1998) Ability of 16 priority PAHs to be photocytotoxic to a cell line from the rainbow trout gill. Toxicology 127:143–155PubMedCrossRefGoogle Scholar
  42. Schulte T, Kurrle R, Rollinghoff M, Gessner A (1997) Molecular characterization and functional analysis of murine interleukin 4 receptor allotypes. J Exp Med 186:1419–1429PubMedCrossRefGoogle Scholar
  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  44. Usacheva A, Sandoval R, Domanski P, Kotenko SV, Nelms K, Goldsmith MA, Colamonici OR (2002) Contribution of the Box 1 and Box 2 motifs of cytokine receptors to Jak1 association and activation. J Biol Chem 277:48220–48226PubMedCrossRefGoogle Scholar
  45. Wakahara S, Konoshita T, Mizuno S, Motomura M, Aoyama C, Makino Y, Kato N, Koni I, Miyamori I (2007) Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology 148:2453–2457PubMedCrossRefGoogle Scholar
  46. Wang T, Diaz-Rosales P, Costa MM, Campbell S, Snow M, Collet B, Martin SAM, Secombes CJ (2011) The first functional characterisation of a non-mammalian interleukin (IL)-21: rainbow trout Oncorhynchus mykiss IL-21 up-regulates the expression of the T helper cell signature cytokines interferon-γ, IL-10 and IL-22. J Immunol 186:. doi: 10.4049/jimmunol.1001203
  47. Wang T, Secombes CJ (2001) Cloning and expression of a putative common cytokine receptor gamma chain (gammaC) gene in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11:233–244PubMedCrossRefGoogle Scholar
  48. Wang T, Secombes CJ (2003) Complete sequencing and expression of three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway of the complement system in rainbow trout Oncorhynchus mykiss. Immunogenetics 55:615–628PubMedCrossRefGoogle Scholar
  49. Wang T, Holland JW, Bols N, Secombes CJ (2005) Cloning and expression of the first nonmammalian interleukin-11 gene in rainbow trout Oncorhynchus mykiss. FEBS J 272:1136–1147PubMedCrossRefGoogle Scholar
  50. Wang T, Hanington PC, Belosevic M, Secombes CJ (2008) Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. J Immunol 181:3310–3322PubMedGoogle Scholar
  51. Wang T, Bird S, Koussounadis A, Holland JW, Carrington A, Zou J, Secombes CJ (2009) Identification of a novel IL-1 cytokine family member in teleost fish. J Immunol 183:962–974PubMedCrossRefGoogle Scholar
  52. Weidemann T, Hofinger S, Muller K, Auer M (2007) Beyond dimerization: a membrane-dependent activation model for interleukin-4 receptor-mediated signalling. J Mol Biol 366:1365–1373PubMedCrossRefGoogle Scholar
  53. Wills-Karp M, and Finkelman FD (2008) Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal 1:pe55Google Scholar
  54. Wolf K, Quimby MC (1962) Established eurythermic lines of fish cells in vitro. Science 135:1065PubMedCrossRefGoogle Scholar
  55. Yan A, Lennarz WJ (2005) Unraveling the mechanism of protein N-glycosylation. J Biol Chem 280:3121–3124PubMedCrossRefGoogle Scholar
  56. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85CrossRefGoogle Scholar
  57. Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238:247–262PubMedCrossRefGoogle Scholar
  58. Zou J, Wang T, Hirono I, Aoki T, Inagawa H, Honda T, Soma GI, Ototake M, Nakanishi T, Ellis AE, Secombes CJ (2002) Differential expression of two tumor necrosis factor genes in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 26:161–172PubMedCrossRefGoogle Scholar
  59. Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, Secombes C (2005) Identification and bioactivities of IFN-gamma in rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish. J Immunol 175:2484–2494PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tiehui Wang
    • 1
  • Wenshu Huang
    • 1
    • 2
  • Maria M. Costa
    • 1
    • 3
  • Samuel A. M. Martin
    • 1
  • Christopher J. Secombes
    • 1
    Email author
  1. 1.Scottish Fish Immunology Research Centre, School of Biological SciencesUniversity of AberdeenAberdeenUK
  2. 2.Fisheries CollegeJimei UniversityXiamenPeople’s Republic of China
  3. 3.Instituto de Investigaciones MarinasConsejo Superior de Investigaciones Científicas (CSIC)VigoSpain

Personalised recommendations