, Volume 62, Issue 11–12, pp 761–765 | Cite as

HLA-Cw group 1 ligands for KIR increase susceptibility to invasive cervical cancer

  • Maureen P. Martin
  • Ingrid B. Borecki
  • Zhengyan Zhang
  • Loan Nguyen
  • Duanduan Ma
  • Xiaojiang Gao
  • Ying Qi
  • Mary Carrington
  • Janet S. RaderEmail author
Brief Communication


Inherited genetic polymorphisms within immune response genes have been shown to associate with risk of invasive cervical cancer (ICC) and its immediate precursor, cervical intraepithelial neoplasia grade 3. Here, we used the transmission/disequilibrium test to detect disease-liability alleles and investigate haplotype transmission of KIR and HLA class I polymorphisms in a large family-based population of women with cervical cancer and their biological parents (359 trios). The effect of distinct human papillomavirus types was also explored. HLA-Cw group 1 (HLA-Cw alleles with asparagine at position 80), which serves as ligand for certain killer immunoglobulin-like receptors (KIR), was significantly overtransmitted in women with ICC (P = 0.04), and particularly in the subgroup of women infected with high risk HPV16 or 18 subtypes (P = 0.008). These data support the involvement of the HLA-C locus in modulating the risk of cervical neoplasia perhaps through its function as ligands for KIR, but functional studies are essential to confirm this hypothesis.


Cervical neoplasia HPV HLA KIR 



This work was supported by National Cancer Institute grants 5R01CA094141 and 5R01CA095713. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Supplementary material

251_2010_477_MOESM1_ESM.docx (20 kb)
Supplementary Table 1 Association of KIR with ICC/CIN3 (DOCX 29 kb)
251_2010_477_MOESM2_ESM.docx (20 kb)
Supplementary Table 2 Association of HLA-Bw with ICC/CIN3 (DOCX 29 kb)
251_2010_477_MOESM3_ESM.docx (24 kb)
Supplementary Table 3 Association of rs9264942 with ICC/CIN3 (DOCX 29 kb)


  1. Arnheim L, Dillner J, Sanjeevi CB (2005) A population-based cohort study of KIR genes and genotypes in relation to cervical intraepithelial neoplasia. Tissue Antigens 65:252–259CrossRefPubMedGoogle Scholar
  2. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217CrossRefPubMedGoogle Scholar
  3. Belinson S, Smith JS, Myers E, Olshan A, Belinson J, Pretorius R, Qiao YL, Hartmann K (2008) Descriptive evidence that risk profiles for cervical intraepithelial neoplasia 1, 2, and 3 are unique. Cancer Epidemiol Biomarkers Prev 17:2350–2355CrossRefPubMedGoogle Scholar
  4. Bosch FX, de Sanjose S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers 23:213–227PubMedGoogle Scholar
  5. Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361:598–604CrossRefPubMedGoogle Scholar
  6. Carrington M, Martin MP, van Bergen J (2008) KIR-HLA intercourse in HIV disease. Trends Microbiol 16:620–627CrossRefPubMedGoogle Scholar
  7. Carrington M, Wang S, Martin MP, Gao X, Schiffman M, Cheng J, Herrero R, Rodriguez AC, Kurman R, Mortel R, Schwartz P, Glass A, Hildesheim A (2005) Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J Exp Med 201:1069–1075CrossRefPubMedGoogle Scholar
  8. Chaturvedi AK, Madeleine MM, Biggar RJ, Engels EA (2009) Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst 101:1120–1130CrossRefPubMedGoogle Scholar
  9. Clayton D (1999) A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 65:1170–1177CrossRefPubMedGoogle Scholar
  10. Clayton D, Jones H (1999) Transmission/disequilibrium tests for extended marker haplotypes. Am J Hum Genet 65:1161–1169CrossRefPubMedGoogle Scholar
  11. Clayton J, Lonjou C (1997) Allele and haplotype frequencies for HLA loci in various ethnic groups. In: Charron D (ed) Genetic Diversity of HLA. Functional and Medical Implication, pp. 668-820. Medical and Scientific International, ParisGoogle Scholar
  12. Coleman N, Birley HD, Renton AM, Hanna NF, Ryait BK, Byrne M, Taylor-Robinson D, Stanley MA (1994) Immunological events in regressing genital warts. Am J Clin Pathol 102:768–774PubMedGoogle Scholar
  13. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37CrossRefPubMedGoogle Scholar
  14. De Vuyst H, Lillo F, Broutet N, Smith JS (2008) HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev 17:545–554CrossRefPubMedGoogle Scholar
  15. Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110:525–541CrossRefGoogle Scholar
  16. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, Zhang K, Gumbs C, Castagna A, Cossarizza A, Cozzi-Lepri A, De Luca A, Easterbrook P, Francioli P, Mallal S, Martinez-Picado J, Miro JM, Obel N, Smith JP, Wyniger J, Descombes P, Antonarakis SE, Letvin NL, McMichael AJ, Haynes BF, Telenti A, Goldstein DB (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–947CrossRefPubMedGoogle Scholar
  17. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D (2004) Assessing the impact of population stratification on genetic association studies. Nat Genet 36:388–393CrossRefPubMedGoogle Scholar
  18. IARC Working Group (1995) Human papillomaviruses. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 64:1–378Google Scholar
  19. Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191:961–976CrossRefPubMedGoogle Scholar
  20. Koshiol J, Lindsay L, Pimenta JM, Poole C, Jenkins D, Smith JS (2008) Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am J Epidemiol 168:123–137CrossRefPubMedGoogle Scholar
  21. Kulkarni S, Martin MP, Carrington M (2008) The Yin and Yang of HLA and KIR in human disease. Semin Immunol 20:343–352CrossRefPubMedGoogle Scholar
  22. Li J, Gerhard DS, Zhang Z, Huettner PC, Wright J, Nguyen L, Lu D, Rader JS (2003) Denaturing high-performance liquid chromatography for detecting and typing genital human papillomavirus. J Clin Microbiol 41:5563–5571CrossRefPubMedGoogle Scholar
  23. Long EO, Rajagopalan S (2000) HLA class I recognition by killer cell Ig-like receptors. Semin Immunol 12:101–108CrossRefPubMedGoogle Scholar
  24. Martin MP, Carrington M (2008) KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol 415:49–64CrossRefPubMedGoogle Scholar
  25. Neuman RJ, Huettner PC, Li L, Mardis ER, Duffy BF, Wilson RK, Rader JS (2000) Association between DQB1 and cervical cancer in patients with human papillomavirus and family controls. Obstet Gynecol 95:134–140CrossRefPubMedGoogle Scholar
  26. Reyburn H, Mandelboim O, Vales-Gomez M, Sheu EG, Pazmany L, Davis DM, Strominger JL (1997) Human NK cells: their ligands, receptors and functions. Immunol Rev 155:119–125CrossRefPubMedGoogle Scholar
  27. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavare S, Deloukas P, Dermitzakis ET (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1:e78CrossRefPubMedGoogle Scholar
  28. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, Montgomery S, Tavare S, Deloukas P, Dermitzakis ET (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224CrossRefPubMedGoogle Scholar
  29. Thomas R, Apps R, Qi Y, Gao X, Male V, O'HUigin C, O'Connor G, Ge D, Fellay J, Martin JN, Margolick J, Goedert JJ, Buchbinder S, Kirk GD, Martin MP, Telenti A, Deeks SG, Walker BD, Goldstein D, McVicar DW, Moffett A, Carrington M (2009) HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 41:1290–1294CrossRefPubMedGoogle Scholar
  30. Wang SS, Hildesheim A, Gao X, Schiffman M, Herrero R, Bratti MC, Sherman ME, Barnes WA, Greenberg MD, McGowan L, Mortel R, Schwartz PE, Zaino RJ, Glass AG, Burk RD, Karacki P, Carrington M (2002a) Comprehensive analysis of human leukocyte antigen class I alleles and cervical neoplasia in 3 epidemiologic studies. J Infect Dis 186:598–605CrossRefPubMedGoogle Scholar
  31. Wang SS, Hildesheim A, Gao X, Schiffman M, Herrero R, Bratti MC, Sherman ME, Barnes WA, Greenberg MD, McGowan L, Mortel R, Schwartz PE, Zaino RJ, Glass AG, Burk RD, Karacki P, Carrington M (2002b) Human leukocyte antigen class I alleles and cervical neoplasia: no heterozygote advantage. Cancer Epidemiol Biomarkers Prev 11:419–420PubMedGoogle Scholar
  32. Wang SS, Wheeler CM, Hildesheim A, Schiffman M, Herrero R, Bratti MC, Sherman ME, Alfaro M, Hutchinson ML, Morales J, Lorincz A, Burk RD, Carrington M, Erlich HA, Apple RJ (2001) Human leukocyte antigen class I and II alleles and risk of cervical neoplasia: results from a population-based study in Costa Rica. J Infect Dis 184:1310–1314CrossRefPubMedGoogle Scholar
  33. Zhang Z, Borecki I, Nguyen L, Ma D, Smith K, Huettner PC, Mutch DG, Herzog TJ, Gibb RK, Powell MA, Grigsby PW, Massad LS, Hernandez E, Judson PL, Swisher EM, Crowder S, Li J, Gerhard DS, Rader JS (2007) CD83 gene polymorphisms increase susceptibility to human invasive cervical cancer. Cancer Res 67:11202–11208CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Maureen P. Martin
    • 1
  • Ingrid B. Borecki
    • 2
  • Zhengyan Zhang
    • 3
  • Loan Nguyen
    • 3
  • Duanduan Ma
    • 2
  • Xiaojiang Gao
    • 1
  • Ying Qi
    • 1
  • Mary Carrington
    • 1
    • 4
  • Janet S. Rader
    • 2
    • 3
    • 5
    Email author
  1. 1.Cancer and Inflammation Program, Laboratory of Experimental ImmunologySAIC-Frederick, Inc. NCI-FrederickFrederickUSA
  2. 2.Department of GeneticsWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisUSA
  4. 4.Ragon Institute of Massachusetts General HospitalMassachusetts Institute of Technology and Harvard UniversityBostonUSA
  5. 5.Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations