Immunogenetics

, Volume 62, Issue 2, pp 85–100 | Cite as

Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants

  • Elizabeth A. Archie
  • Tammy Henry
  • Jesus E. Maldonado
  • Cynthia J. Moss
  • Joyce H. Poole
  • Virginia R. Pearson
  • Suzan Murray
  • Susan C. Alberts
  • Robert C. Fleischer
Original Paper

Abstract

Genes of the vertebrate major histocompatibility complex (MHC) are crucial to defense against infectious disease, provide an important measure of functional genetic diversity, and have been implicated in mate choice and kin recognition. As a result, MHC loci have been characterized for a number of vertebrate species, especially mammals; however, elephants are a notable exception. Our study is the first to characterize patterns of genetic diversity and natural selection in the elephant MHC. We did so using DNA sequences from a single, expressed DQA locus in elephants. We characterized six alleles in 30 African elephants (Loxodonta africana) and four alleles in three Asian elephants (Elephas maximus). In addition, for two of the African alleles and three of the Asian alleles, we characterized complete coding sequences (exons 1–5) and nearly complete non-coding sequences (introns 2–4) for the class II DQA loci. Compared to DQA in other wild mammals, we found moderate polymorphism and allelic diversity and similar patterns of selection; patterns of non-synonymous and synonymous substitutions were consistent with balancing selection acting on the peptides involved in antigen binding in the second exon. In addition, balancing selection has led to strong trans-species allelism that has maintained multiple allelic lineages across both genera of extant elephants for at least 6 million years. We discuss our results in the context of MHC diversity in other mammals and patterns of evolution in elephants.

Keywords

African elephant Asian elephant DQA Major histocompatibility complex Coding sequence Molecular evolution 

Notes

Acknowledgments

We thank the Office of the President of Kenya for permission to work in Amboseli National Park under permit number MOES&T 13/001/30C 72/7. We thank the Kenya Wildlife Service for local sponsorship. We thank the Amboseli Elephant Research project for invaluable scientific and logistical support, particularly the team of N. Njiraini, K. Sayialel, and S. Sayialel who contributed greatly to the collection of genetic samples. We thank the Smithsonian National Zoo, the Philadelphia Zoo in Philadelphia, PA, the Gladys Porter Zoo in Brownsville, TX, and the Six Flags Wild Safari Park in Jackson, NJ for their support and cooperation in sample collection. This research was supported by the Smithsonian Institution Abbott Endowment Fund, the National Zoo’s Institution Center for Conservation and Evolutionary Genetics, the Friends of the National Zoo, the National Science Foundation (IBN0091612 to SCA), the Amboseli Trust for Elephants, the Amboseli Elephant Research Project, and Duke University.

References

  1. Alberts SC (1999) Thirteen Mhc-DQA1 alleles from two populations of baboons. Immunogenetics 49:825–827CrossRefPubMedGoogle Scholar
  2. Antunes SG, de Groot NG, Brok H, Doxiadis G, Menezes AAL, Otting N, Bontrop RE (1998) The common marmoset: a new world primate species with limited MHC class II variability. Proc Natl Acad Sci U S A 95:11745–11750CrossRefPubMedGoogle Scholar
  3. Archie EA, Moss CJ, Alberts SC (2003) Characterization of tetranucleotide microsatellite loci in the African savannah elephant (Loxodonta africana africana). Mol Ecol Notes 3:244–246CrossRefGoogle Scholar
  4. Archie EA, Moss CJ, Alberts SC (2006) The ties that bind: genetic relatedness predicts the fission and fusion of groups in wild African elephants (Loxodonta africana). Proc Roy Soc London 273:513–522CrossRefGoogle Scholar
  5. Archie EA, Hollister-Smith JA, Poole JH, Lee PC, Moss CJ, Maldonado JE, Fleischer RC, Alberts SC (2007) Behavioral inbreeding avoidance in wild African elephants. Mol Ecol 16:4138–4148CrossRefPubMedGoogle Scholar
  6. Archie EA, Maldonado JE, Hollister-Smith JA, Poole JH, Moss CJ, Fleischer RC, Alberts SC (2008) Fine-scale population genetic structure in a fission–fusion society. Mol Ecol 17:2666–2679CrossRefPubMedGoogle Scholar
  7. Armbruster P, Lande R (1993) A population viability analysis for African elephant (Loxodonta africana): how big should reserves be? Conserv Biol 7:602–610CrossRefGoogle Scholar
  8. Borriello F, Krauter KS (1990) Reactive site polymorphism in the murine protease inhibitor gene family is delineated using a modification of the PCR reaction. Nucleic Acids Res 18:5481–5487CrossRefPubMedGoogle Scholar
  9. Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461CrossRefGoogle Scholar
  10. Caughley G, Dublin HT, Parker ISC (1990) Projected decline of the African elephant. Biol Conserv 54:157–164CrossRefGoogle Scholar
  11. Cheetham SA, Thom MD, Jury F, Ollier WER, Beynon RJ, Hurst JL (2007) The genetic basis of individual-recognition signals in the mouse. Curr Biol 17:1771–1777CrossRefPubMedGoogle Scholar
  12. Cutrera AP, Lacey EA (2006) Major histocompatibility complex variation in talas tuco-tucos: the influence of demography on selection. J Mammal 87:706–716CrossRefGoogle Scholar
  13. Decker DJ, Stewart BS, Lehman N (2002) Major histocompatibility complex class II DOA sequences from three Antarctic seal species verify stabilizing selection on the DO locus. Tissue Antigens 60:534–538CrossRefPubMedGoogle Scholar
  14. Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722PubMedGoogle Scholar
  15. Gaudier S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals and extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586CrossRefGoogle Scholar
  16. Geluk A, Elferink DG, Slierendregt BL, Vanmeijgaarden KE, de Vries RRP, Ottenhoff THM, Bontrop RE (1993) Evolutionary conservation of major histocompatibility complex-DR/peptide/T cell interactions in primates. J Exp Med 177:979–987CrossRefPubMedGoogle Scholar
  17. Grobler DG, Raath JP, Braak LE, Keet DF, Gerdes GH, Barnard BJ, Kriek NP, Jardine J, Swanepoel R (1995) An outbreak of encephalomyocarditis-virus infection in free-ranging African elephants in the Kruger National Park. Onderstepoort J Vet Res 62:97–108PubMedGoogle Scholar
  18. Harrigan RJ, Mazza ME (2008) Computation vs. cloning: evaluation of two methods for haplotype determination. Mol Ecol Resour 8:1239–1248CrossRefGoogle Scholar
  19. Hollister-Smith JA, Poole JH, Archie EA, Vance EA, Georgiadis NJ, Moss CJ, Alberts SC (2007) Age, musth and paternity in wild male African elephants, Loxodonta africana. Anim Behav 74:287–296CrossRefGoogle Scholar
  20. Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New YorkGoogle Scholar
  21. Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci evidence for overdominant selection. Proc Natl Acad Sci 86:958–962CrossRefPubMedGoogle Scholar
  22. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435CrossRefPubMedGoogle Scholar
  23. Klein J (1980) Generation of diversity at MHC loci: implications for T-cell receptor repertoires. In: Fougereau M, Dausset J (eds) Immunology 80. Academic, London, pp 239–235Google Scholar
  24. Klein J (1986) Natural history of the major histocompatibility complex, 1st edn. Wiley, New YorkGoogle Scholar
  25. Krause J, Dear PH, Pollack JL, Slatkin M, Spriggs H, Barnes I, Lister AM, Ebersberger I, Paabo S, Hofreiter M (2006) Multiplex amplification of the mammoth mitochondrial genome and the evolution of elephantidae. Nature 439:724–727CrossRefPubMedGoogle Scholar
  26. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4(4):e91Google Scholar
  27. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245CrossRefPubMedGoogle Scholar
  28. L’Abbe D, Belmaaza A, Decary F, Chartrand P (1992) Elimination of heteroduplex artifacts when sequencing HLA genes amplified by polymerase chain reaction. Immunogenetics 35:395–397PubMedGoogle Scholar
  29. Lehman N, Decker DJ, Stewart BS (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among Antarctic phocid pinnipeds. J Mammal 85:1215–1224CrossRefGoogle Scholar
  30. Lindique PM, Turnbull PCB (1994) Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J Vet Res 61:71–83Google Scholar
  31. Manning CJ, Wakeland EK, Potts WK (1992) Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 360:581–583CrossRefPubMedGoogle Scholar
  32. Mbise AN, Mlengeya TDK, Mollel JO (1998) Septicaemic salmonellosis of elephants in Tanzania. Bull Anim Health Prod Afr 46:95–100Google Scholar
  33. Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243CrossRefPubMedGoogle Scholar
  34. Murphy WJ, Eizrik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351CrossRefPubMedGoogle Scholar
  35. Naruse TK, Kawata H, Anzai T, Takashige N, Kagiya M, Nose Y, Nabeya N, Isshiki G, Tatsumi N, Inoko H (1999) Limited polymorphism in the HLA-DOA gene. Tissue Antigens 53:359–365CrossRefPubMedGoogle Scholar
  36. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  37. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  38. Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci U S A 95:3714–3719CrossRefPubMedGoogle Scholar
  39. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci U S A 99:11260–11264CrossRefPubMedGoogle Scholar
  40. Piertney SB, Olivier MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  41. Posada D, Crandall KA (1998) MODEL TEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  42. Rajakaruna RS, Brown A, Kaukinen KH, Miller KM (2006) Major histocompatibility complex and kin discrimination in Atlantic salmon and brook trout. Mol Ecol 15:4569–4575CrossRefPubMedGoogle Scholar
  43. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641CrossRefPubMedGoogle Scholar
  44. Richman LK, Montali RJ, Garber RL, Kennedy MA, Lehnhardt J, Hildebrandt T, Schmitt D, Hardy D, Alcendor DJ, Hayward GS (1999) Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 283:1171–1176CrossRefPubMedGoogle Scholar
  45. Richman LK, Montali RJ, Hayward GS (2000) Review of a newly recognized disease of elephants caused by endotheliotropic herpesviruses. Zoo Biol 19:383–392CrossRefGoogle Scholar
  46. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386 Source code available at http://fokker.wi.mit.edu/primer3/.
  47. Ryan SJ, Thompson SD (2001) Disease risk and inter-institutional transfer of specimens in cooperative breeding programs: herpes and the elephant species survival plan. Zoo Biol 20:89–101CrossRefPubMedGoogle Scholar
  48. Scally M, Madsen O, Douady CJ, de Jong WW, Stanhope MJ (2001) Molecular evidence for the major clades of placental mammals. J Mamm Evol 8:239–277CrossRefGoogle Scholar
  49. Slade RW, Moritz C, Heideman A, Hale PT (1993) Rapid assessment of single-copy nuclear DNA variation in diverse species. Mol Ecol 2:359–373CrossRefPubMedGoogle Scholar
  50. Swofford DL (2002) Phylogenetic analysis using parsimony (*and other methods). Sinauer, SunderlandGoogle Scholar
  51. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism at the major histocompatibility complex loci. Genetics 124:967–978PubMedGoogle Scholar
  52. Waddell PJ, Shelley S (2003) Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, [gamma]-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol 28:197–224CrossRefPubMedGoogle Scholar
  53. Weber DS, Brent SS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718CrossRefPubMedGoogle Scholar
  54. Westerdahl H, Walenstrom J, Hansson B, Hasselquist D, von Schantz T, and Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London 272:1511–1518Google Scholar
  55. Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat 160:S225–S237CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elizabeth A. Archie
    • 1
    • 2
  • Tammy Henry
    • 1
    • 3
  • Jesus E. Maldonado
    • 1
  • Cynthia J. Moss
    • 4
  • Joyce H. Poole
    • 4
  • Virginia R. Pearson
    • 5
  • Suzan Murray
    • 6
  • Susan C. Alberts
    • 7
  • Robert C. Fleischer
    • 1
  1. 1.Center for Conservation and Evolutionary Genetics, National Zoological Park & National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  2. 2.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  3. 3.Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxUSA
  4. 4.Amboseli Trust for ElephantsNairobiKenya
  5. 5.Philadelphia ZooPhiladelphiaUSA
  6. 6.Animal HealthNational Zoological ParkWashingtonUSA
  7. 7.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations