Immunogenetics

, Volume 61, Issue 6, pp 451–461 | Cite as

Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus)

Original Paper

Abstract

Although the number of studies focusing on the major histocompatibility complex (MHC) in non-model vertebrates is increasing, results are often contradictory, and the structure of MHC is still poorly understood in wild species. Here, we describe the structure and diversity of exon 3 of MHC class I in a passerine bird, the Scarlet Rosefinch (Carpodacus erythrinus). Using capillary electrophoresis single-strand conformation polymorphism, we identified 82 different MHC class I variants in one Rosefinch population nesting at one site in the Czech Republic. Thus far, this is the highest intra-populational MHC class I variation observed in birds. We have not found support for ‘minimal essential’ MHC in this species since individuals exhibited between three and nine different exon 3 sequences, indicating that there may be at least five amplified MHC class I genes. By cloning, we obtained and analysed 29 exon sequences and found that all of them could be translated into potentially functional proteins. We also show that strong positive selection appears to be acting mainly, but not only, on previously described antigen-binding sites in MHC class I genes. Furthermore, our results indicate that recombination has played an important role in generating genetic diversity of these genes in the Scarlet Rosefinch; we discuss the significance of this extremely high genetic diversity in light of the life history traits of this species, such as long-distance migration.

Keywords

MHC class I Scarlet Rosefinch Carpodacus erythrinus Positive selection Recombination 

References

  1. Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. W. B. Saunders Company, PhiladelphiaGoogle Scholar
  2. Aguilar A, Garza JC (2007) Patterns of historical balancing selection on the salmonid major histocompatibility complex class II beta gene. J Mol Evol 65:34–43. doi:10.1007/s00239-006-0222-8 PubMedCrossRefGoogle Scholar
  3. Albrecht T (2004) Edge effect in wetland-arable land boundary determines nesting success of scarlet rosefinches Carpodacus erythrinus in the Czech Republic. Auk 121:361–371. doi:10.1642/0004-8038(2004)121[0361:EEIWLB]2.0.CO;2 CrossRefGoogle Scholar
  4. Albrecht T, Schnitzer J, Kreisinger J, Exnerová A, Bryja J, Munclinger P (2007) Extrapair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486. doi:10.1093/beheco/arm001 CrossRefGoogle Scholar
  5. Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC Class II B genes in birds of prey. J Mol Evol 65:541–554. doi:10.1007/s00239-007-9033-9 PubMedCrossRefGoogle Scholar
  6. Amills M, Ramírez O, Tomás A, Obexer-Ruff G, Vidal O (2008) Positive selection on mammalian MHC-DQ genes revisited from a multispecies perspective. Genes Immun 9:651–658. doi:10.1038/gene.2008.62 PubMedCrossRefGoogle Scholar
  7. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedGoogle Scholar
  8. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of human class I histocompatibility antigen, HLA-A2. Nature 329:506–512. doi:10.1038/329506a0 PubMedCrossRefGoogle Scholar
  9. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865. doi:10.1007/s00251-004-0648-3 PubMedCrossRefGoogle Scholar
  10. Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G (2006a) Complex MHC-based mate choice in a wild passerine. Proc R Soc 273:1111–1116. doi:10.1098/rspb.2005.3325 CrossRefGoogle Scholar
  11. Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006b) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution Int J Org Evolution 60:383–389Google Scholar
  12. Bryja J, Galan M, Charbonnel N, Cosson J-F (2005) Analysis of major histocompatibility complex class II gene in water voles using capillary electrophoresis-single stranded conformation polymorphism. Mol Ecol Notes 5:173–176. doi:10.1111/j.1471-8286.2004.00855.x CrossRefGoogle Scholar
  13. Burri R, Niculita-Hirzel H, Roulin A, Fumagalli L (2008) Isolation and characterization of major histocompatibility complex (MHC) class II B genes in teh Barn owl (Aves: Tyto alba). Immunogenetics 60:543–550. doi:10.1007/s00251-008-0308-0 PubMedCrossRefGoogle Scholar
  14. Cramp S, Simmons KEL, Perrins CM (eds) (1977-1994) The birds of the Western Palearctic. Oxford University Press, OxfordGoogle Scholar
  15. Edwards SV, Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian MHC genes revealed by class II B genes of songbirds. Proc Natl Acad Sci U S A 92:12200–12204. doi:10.1073/pnas.92.26.12200 PubMedCrossRefGoogle Scholar
  16. Edwards SV, Chesnut K, Satta Y, Wakeland EK (1997) Ancestral polymorphism of Mhc Class II genes in mice: implications for balancing selection and the mammalian molecular clock. Genetics 146:655–668PubMedGoogle Scholar
  17. Fitzpatrick S (1994) Colourful migratory birds: evidence for a mechanism other than parasite resistance for the maintenance of ‘good genes’ sexual selection. Proc R Soc Lond B Biol Sci 257:155–166. doi:10.1098/rspb.1994.0109 CrossRefGoogle Scholar
  18. Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the major histocompatibility complex in Savannah sparrows. Mol Ecol 11:1125–1130. doi:10.1046/j.1365-294X.2002.01508.x PubMedCrossRefGoogle Scholar
  19. Garrigan D, Edwards SV (1999) Polymorphism across an exon-intron boundary in an avian Mhc class II B gene. Mol Biol Evol 16:1599–1606PubMedGoogle Scholar
  20. Goüy de Bellocq J, Charbonnel N, Morand S (2008) Coevolutionary relationship between helminth diversity and Mhc class II polymorphism in rodents. J Evol Biol 21:1144–1150. doi:10.1111/j.1420-9101.2008.01538.x PubMedCrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analisis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hansson B, Richardson DS (2005) Genetic variation in two endangered Acrocephalus species compared to a widespread congener: estimates based on functional and random loci. Anim Conserv 8:83–90. doi:10.1017/S1367943004001878 CrossRefGoogle Scholar
  23. Hess CM, Edwards SV (2002) The evolution of major histocompatibility genes in birds. Bioscience 52:423–431. doi:10.1641/0006-3568(2002)052[0423:TEOTMH]2.0.CO;2 CrossRefGoogle Scholar
  24. Hess CM, Gasper J, Hoekstra H, Hill C, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the House Finch (Carpodacus mexicanus). Genome Res 10:13–23. doi:10.1101/gr.10.5.613 CrossRefGoogle Scholar
  25. Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322–335. doi:10.1186/1471-2164-7-322 PubMedCrossRefGoogle Scholar
  26. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435. doi:10.1146/annurev.genet.32.1.415 PubMedCrossRefGoogle Scholar
  27. Hughes CR, Miles S, Walbroehl JM (2008) Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 60:219–231. doi:10.1007/s00251-008-0287-1 PubMedCrossRefGoogle Scholar
  28. Indovina P, Megiorni F, Fontemaggi G, Coni P, Mora B, Mazzilli MC (2001) Absence of in vivo DNA-Protein interactions in the DQA2 and DQB2 promoter regions. Hum Immunol 62:504–508. doi:10.1016/S0198-8859(01)00236-1 PubMedCrossRefGoogle Scholar
  29. Jarvi SI, Goto RM, Gee GF, Briles WE, Miller MM (1999) Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes. Am Genet Assoc 90:152–159Google Scholar
  30. Kaufman J (1999) Co-evolving genes in MHC haplotypes: the ‘rule’ for nonmammalian vertebrates? Immunogenetics 50:228–236. doi:10.1007/s002510050597 PubMedCrossRefGoogle Scholar
  31. Kaufman J, Salamonsen J, Flajnik M (1994) Evolutionary conservation of MHC class I and class II molecules-different yet the same. Semin Immunol 6:411–424. doi:10.1006/smim.1994.1050 PubMedCrossRefGoogle Scholar
  32. Kaufman J, Völk H, Wallny H (1995) A „minimal essential MHC“ and an „unrecognized MHC“: two extremes in selection for polymorphism. Immunol Rev 143:63–88. doi:10.1111/j.1600-065X.1995.tb00670.x PubMedCrossRefGoogle Scholar
  33. Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117. doi:10.1111/j.1600-065X.1999.tb01385.x PubMedCrossRefGoogle Scholar
  34. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  35. Klein J, Sato A, Nagl S, O'h Uigin C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Syst 29:1–21. doi:10.1146/annurev.ecolsys.29.1.1 CrossRefGoogle Scholar
  36. Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899. doi:10.1016/j.immuni.2007.11.007 PubMedCrossRefGoogle Scholar
  37. Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi:10.1093/molbev/msi105 PubMedCrossRefGoogle Scholar
  38. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. doi:10.1093/bioinformatics/bti079 CrossRefGoogle Scholar
  39. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi:10.1093/molbev/msl051 PubMedCrossRefGoogle Scholar
  40. Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G (2008) Antagonistic effects of a MHC class I allele on malaria-infected house sparrows. Ecol Lett 11:258–265. doi:10.1111/j.1461-0248.2007.01141.x PubMedCrossRefGoogle Scholar
  41. Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE (2004) The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 56:192–203. doi:10.1007/s00251-004-0672-3 PubMedCrossRefGoogle Scholar
  42. Miller HC, Lambert DM (2004) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191PubMedGoogle Scholar
  43. Miller MM, Goto RM, Bernot A, Zoorob R, Auffray C, Bumstead N, Briles WE (1994) Two Mhc class I and two Mhc class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci U S A 91:4397–4401. doi:10.1073/pnas.91.10.4397 PubMedCrossRefGoogle Scholar
  44. Miller HC, Belov K, Daugherty CH (2006) MHC Class I genes in the Tuatara (Sphenodon spp.): evolution of the MHC in an ancient reptilian order. Mol Biol Evol 23:949–956. doi:10.1093/molbev/msj099 PubMedCrossRefGoogle Scholar
  45. Pérez-Tris J, Bensch S (2005) Dispersal increases local transmission of avian malarial parasites. Ecol Lett 8:838–845. doi:10.1111/j.1461-0248.2005.00788.x CrossRefGoogle Scholar
  46. Poláková R, Vyskočilová M, Martin JF, Mays HL Jr, Hill GE, Bryja J, Schnitzer J, Albrecht T (2007) A multiplex set of microsatellite markers for the Scarlet Rosefinch (Carpodacus erythrinus). Mol Ecol Notes 7:1375–1378. doi:10.1111/j.1471-8286.2007.01892.x CrossRefGoogle Scholar
  47. Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II-genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437. doi:10.1007/s00251-004-0704-z PubMedCrossRefGoogle Scholar
  48. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus sepcies: the outbred Great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529. doi:10.1046/j.1365-294X.2003.02005.x PubMedCrossRefGoogle Scholar
  49. Richardson DS, Komdeur J, Burke T, von Schantz T (2004) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B Biol Sci 272:759–767. doi:10.1098/rspb.2004.3028 CrossRefGoogle Scholar
  50. Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752PubMedGoogle Scholar
  51. Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (Quail and Chicken) MHC regions. J Immunol 172:6751–6763PubMedGoogle Scholar
  52. Shiina T, Hosomichi K, Hanzawa K (2006) Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 77:151–162. doi:10.1111/j.1740-0929.2006.00333.x CrossRefGoogle Scholar
  53. Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJ, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490. doi:10.1007/s002510050524 PubMedCrossRefGoogle Scholar
  54. Spottiswoode C, Møller AP (2004) Extra-pair paternity, migration and breeding synchrony in birds. Behav Ecol 15:41–57CrossRefGoogle Scholar
  55. Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734. doi:10.1007/s00251-007-0234-6 PubMedCrossRefGoogle Scholar
  56. van Oosterhout C, Joyce DA, Cummings SM (2006) Evolution of MHC class IIB in the genome of wild and ornamental guppies, Poecilia reticulata. Heredity 97:111–118. doi:10.1038/sj.hdy.6800843 PubMedCrossRefGoogle Scholar
  57. Wallny H, Avila D, Hunt L, Powell T, Riegert P, Salomonsen J, Skjodt K, Vainio O, Vilbois F, Wiles M, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chicken. Proc Natl Acad Sci U S A 103:1434–1439. doi:10.1073/pnas.0507386103 PubMedCrossRefGoogle Scholar
  58. Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170. doi:10.1007/s002510050477 PubMedCrossRefGoogle Scholar
  59. Westerdahl H, Witzel H, von Schantz T (2000) MHC diversity in two passerine birds: no evidence for a minimal essential MHC. Immunogenetics 52:92–100. doi:10.1007/s002510000256 PubMedCrossRefGoogle Scholar
  60. Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542. doi:10.1038/sj.hdy.6800450 PubMedCrossRefGoogle Scholar
  61. Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc Lond B Biol Sci 272:1511–1518. doi:10.1098/rspb.2005.3113 CrossRefGoogle Scholar
  62. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425. doi:10.1534/genetics.105.044917 PubMedCrossRefGoogle Scholar
  63. Wittzell H, Bernot A, Auffray C, Zoorob R (1999a) Concerted evolution of two Mhc class II B loci in pheasants and domestic chicken. Mol Biol Evol 16:479–490PubMedGoogle Scholar
  64. Wittzell H, Madsen T, Westerdahl H, Shine R, von Schantz T (1999b) MHC variation in birds and reptiles. Genetica 104:301–309. doi:10.1023/A:1026421607089 CrossRefGoogle Scholar
  65. Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60:233–247. doi:10.1007/s00251-008-0288-0 PubMedCrossRefGoogle Scholar
  66. Xia C, Hu T, Yang T, Wang L, Xu G, Lin C (2005) cDNA cloning, genomic structure and expression analysis of the goose (Anser cygnoides) MHC class I gene. Vet Immunol Immunopathol 107:291–302. doi:10.1016/j.vetimm.2005.05.005 PubMedCrossRefGoogle Scholar
  67. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  68. Yang Z, Swanson WJ, Vacquier VD (2000) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455PubMedGoogle Scholar
  69. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118. doi:10.1093/molbev/msi097 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Population Biology, Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicKoněšínCzech Republic
  2. 2.Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations