Immunogenetics

, Volume 61, Issue 6, pp 463–481

Origin and evolution of the vertebrate leukocyte receptors: the lesson from tunicates

Original Paper

Abstract

Two selected receptor genes of the immunoglobulin superfamily (IgSF), one CTX/JAM family member, and one poliovirus receptor-like nectin that have features of adhesion molecules can be expressed by Ciona hemocytes, the effectors of immunity. They can also be expressed in the nervous system (CTX/JAM) and in the ovary (nectin). The genes encoding these receptors are located among one set of genes, spread over Ciona chromosomes 4 and 10, and containing other IgSF members homologous to those encoded by genes present in a tetrad of human (1, 3 + X, 11, 21 + 19q) or bird chromosomes (1, 4, 24, 31) that include the leukocyte receptor complex. It is proposed that this tetrad is due to the two rounds of duplication that affected a single prevertebrate ancestral region containing a primordial leukocyte receptor complex involved in immunity and other developmental regulatory functions.

Keywords

Linkage Duplication Evolution Tunicates Leukocyte receptors Hemocytes 

Supplementary material

251_2009_373_Fig1_ESM.tif (59.9 mb)
High Resolution (TIFF 61299 kb)
251_2009_373_MOESM1_ESM.doc (70 kb)
Supplementary Table 1The 15 Ciona genes followed in the human tetrad (DOC 69 kb)
251_2009_373_MOESM2_ESM.doc (312 kb)
Supplementary Table 2Organization of the IgSF and linked genes pertinent to this study on Human (a, b, c, d, e) and Chicken (f, g, h, i) chromosomes (DOC 312 kb)

References

  1. Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR et al (2003) Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: "waiting for Godot". Immunogenetics 55:570–581. doi:10.1007/s00251-003-0606-5 PubMedCrossRefGoogle Scholar
  2. Barclay AN, Brown MH, Law SKA, McKnight AJ, Tomlinson MG, van der Merwe PA (1997) The leucocyte antigen. Academic Press, San DiegoGoogle Scholar
  3. Berg SF, Fossum S, Dissen E (1999) NILR-1, a novel immunoglobulin-like receptor expressed by neutrophilic granulocytes, is encoded by a leukocyte receptor gene complex on rat chromosome 1. Eur J Immunol 29:2000–2006. doi:10.1002/(SICI)1521-4141(199906)29:06<2000::AID-IMMU2000>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  4. Boulanger LM, Huh GS, Shatz CJ (2001) Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 11:568–578. doi:10.1016/S0959-4388(00) 00251-8 PubMedCrossRefGoogle Scholar
  5. Brites D, McTaggart S, Morris K, Anderson J, Thomas K, Colson I et al (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25:1429–1439. doi:10.1093/molbev/msn087 PubMedCrossRefGoogle Scholar
  6. Cadavid LF, Powell AE, Nicotra ML, Moreno M, Buss LW (2004) An invertebrate histocompatibility complex. Genetics 167:357–365. doi:10.1534/genetics.167.1.357 PubMedCrossRefGoogle Scholar
  7. Cannon JP, Haire RN, Litman GW (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 3:1200–1207. doi:10.1038/ni849 PubMedCrossRefGoogle Scholar
  8. Cannon JP, Haire RN, Pancer Z, Mueller MG, Skapura D, Cooper MD et al (2005) Variable domains and a VpreB-like molecule are present in a jawless vertebrate. Immunogenetics 56:924–929. doi:10.1007/s00251-004-0766-y PubMedCrossRefGoogle Scholar
  9. Chretien I, Robert J, Marcuz A, Garcia-Sanz JA, Courtet M, Du Pasquier L (1996) CTX, a novel molecule specifically expressed on the surface of cortical thymocytes in Xenopus. Eur J Immunol 26:780–791PubMedCrossRefGoogle Scholar
  10. Cotelli F, Andronico F, De Santis R, Monroy A, Rosati F (1981) Differentiation of the vitelline coat in the ascidian Ciona intestinalis: An ultrastructural study. Dev Biol 190:252–258Google Scholar
  11. Daeron M, Jaeger S, Du Pasquier L, Vivier E (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224:11–43. doi:10.1111/j.1600-065X.2008.00666.x PubMedCrossRefGoogle Scholar
  12. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968. doi:10.1038/nature04336 PubMedCrossRefGoogle Scholar
  13. Dennis G Jr, Kubagawa H, Cooper MD (2000) Paired Ig-like receptor homologs in birds and mammals share a common ancestor with mammalian Fc receptors. Proc Natl Acad Sci USA 97:13245–13250. doi:10.1073/pnas.230442897 PubMedCrossRefGoogle Scholar
  14. De Santis R, Pinto MR (1991) Gamete self-discrimination in ascidians: a role for the follicle cells. Mol Reprod Dev 29:47–50. doi:10.1002/mrd.1080290108 PubMedCrossRefGoogle Scholar
  15. De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K et al (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–459. doi:10.1038/nature04150 PubMedCrossRefGoogle Scholar
  16. Du Pasquier L (1999) Relationship among the genes encoding MHC molecules and the specific antigen receptor. In: Kasahara M (ed) Major Histocompatibility Complex Evolution, Structure, and Function. Spring, Tokyo, pp 53–65Google Scholar
  17. Du Pasquier L (2000) The phylogenetic origin of antigen-specific receptors. Curr Top Microbiol Immunol 248:160–185PubMedGoogle Scholar
  18. Du Pasquier L (2002) Several MHC-linked Ig superfamily genes have features of ancestral antigen-specific receptor genes. Curr Top Microbiol Immunol 266:57–71PubMedGoogle Scholar
  19. Du Pasquier L (2004) Innate immunity in early chordates and the appearance of adaptive immunity. C R Biol 327:591–601. doi:10.1016/j.crvi.2004.04.004 PubMedCrossRefGoogle Scholar
  20. Du Pasquier L (2005) Immunology. Insects diversify one molecule to serve two systems. Science 309:1826–1827. doi:10.1126/science.1118828 PubMedCrossRefGoogle Scholar
  21. Du Pasquier L, Zucchetti I, De Santis R (2004) Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol Rev 198:233–248. doi:10.1111/j.0105-2896.2004.00122.x PubMedCrossRefGoogle Scholar
  22. Ermak TH (1976) The hematogenic tissues of tunicates. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrow-bursa cells. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 45–56Google Scholar
  23. Fayngerts SA, Najakshin AM, Taranin AV (2007) Species-specific evolution of the FcR family in endothermic vertebrates. Immunogenetics 59:493–506. doi:10.1007/s00251-007-0208-8 PubMedCrossRefGoogle Scholar
  24. Gil OD, Zanazzi G, Struyk AF, Salzer JL (1998) Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci 18:9312–9325PubMedGoogle Scholar
  25. Guselnikov SV, Ramanayake T, Erilova AY, Mechetina LV, Najakshin AM, Robert J et al (2008) The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution. BMC Evol Biol 8:148. doi:10.1186/1471-2148-8-148 PubMedCrossRefGoogle Scholar
  26. Guzman G, Oh S, Shukla D, Engelhard HH, Valyi-Nagy T (2006) Expression of entry receptor nectin-1 of herpes simplex virus 1 and/or herpes simplex virus 2 in normal and neoplastic human nervous system tissues. Acta Virol 50:59–66PubMedGoogle Scholar
  27. Hansen JD, DuPasquier L, Lefranc MP, Lopez V, Benmansour A, Boudinot P (2008) The B7 family of immunoregulatory receptors: A comparative and evolutionary perspective. Mol Immunol (in press).Google Scholar
  28. Kasahara M (1998) What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 166:159–175. doi:10.1111/j.1600-065X.1998.tb01261.x PubMedCrossRefGoogle Scholar
  29. Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167:17–32. doi:10.1111/j.1600-065X.1999.tb01379.x PubMedCrossRefGoogle Scholar
  30. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552. doi:10.1016/j.coi.2007.07.009 PubMedCrossRefGoogle Scholar
  31. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:129–139. doi:10.1371/journal.pgen.0010027 PubMedCrossRefGoogle Scholar
  32. Kürn U, Sommer F, Hemmrich G, Bosch TC, Khalturin K (2007) Allorecognition in urochordates: identification of a highly variable complement receptor-like protein expressed in follicle cells of Ciona. Dev Comp Immunol 31:360–371. doi:10.1016/j.dci.2006.06.008 PubMedCrossRefGoogle Scholar
  33. Lange R, Peng X, Wimmer E, Lipp M, Bernhardt G (2001) The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285:218–227. doi:10.1006/viro.2001.0943 PubMedCrossRefGoogle Scholar
  34. Lee H, Guo J, Li M, Choi JK, DeMaria M, Rosenzweig M et al (1998) Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol 18:5219–5228PubMedGoogle Scholar
  35. Lopez M, Aoubala M, Jordier F, Isnardon D, Gomez S, Dubreuil P (1998) The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 92:4602–4611PubMedGoogle Scholar
  36. Lui WY, Sze KL, Lee WM (2006) Nectin-2 expression in testicular cells is controlled via the functional cooperation between transcription factors of the Sp1, CREB, and AP-1 families. J Cell Physiol 207:144–157. doi:10.1002/jcp. 20545 PubMedCrossRefGoogle Scholar
  37. Maier MK, Seth S, Czeloth N, Qiu Q, Ravens I, Kremmer E et al (2007) The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur J Immunol 37:2214–2225. doi:10.1002/eji.200737072 PubMedCrossRefGoogle Scholar
  38. Mancuso V (1965) An electron microscope study of the test cells and follicle cells of Ciona intestinalis during oogenesis. Acta Embryol Morphol Exp 8:239–266PubMedGoogle Scholar
  39. Marino R, Pinto MR, Cotelli F, Lamia CL, De Santis R (1998) The hsp70 protein is involved in the acquisition of gamete self-sterility in the ascidian Ciona intestinalis. Development 125:899–907PubMedGoogle Scholar
  40. Marino R, De Santis R, Giuliano P, Pinto MR (1999) Follicle cell proteasome activity and acid extract from the egg vitelline coat prompt the onset of self-sterility in Ciona intestinalis oocytes. Proc Natl Acad Sci USA 96:9633–9636. doi:10.1073/pnas.96.17.9633 PubMedCrossRefGoogle Scholar
  41. Marino R, Kimura Y, De Santis R, Lambris JD, Pinto MR (2002) Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53:1055–1064. doi:10.1007/s00251-001-0421-9 PubMedCrossRefGoogle Scholar
  42. Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88. doi:10.1016/S1471-4906(01) 02155-X PubMedCrossRefGoogle Scholar
  43. Melillo D, Sfyroera G, De Santis R, Graziano R, Marino R, Lambris JD et al (2006) First identification of a chemotactic receptor in an invertebrate species: structural and functional characterization of Ciona intestinalis C3a receptor. J Immunol 177:4132–4140PubMedGoogle Scholar
  44. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806. doi:10.1073/pnas.94.15.7799 PubMedCrossRefGoogle Scholar
  45. Nyholm SV, Passegue E, Ludington WB, Voskoboynik A, Mitchel K, Weissman IL et al (2006) fester, A candidate allorecognition receptor from a primitive chordate. Immunity 25:163–173. doi:10.1016/j.immuni.2006.04.011 PubMedCrossRefGoogle Scholar
  46. Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685PubMedGoogle Scholar
  47. Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004a) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180. doi:10.1038/nature02740 PubMedCrossRefGoogle Scholar
  48. Pancer Z, Mayer WE, Klein J, Cooper MD (2004b) Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc Natl Acad Sci USA 101:13273–13278. doi:10.1073/pnas.0405529101 PubMedCrossRefGoogle Scholar
  49. Pinto MR, Chinnici CM, Kimura Y, Melillo D, Marino R, Spruce LA et al (2003) CiC3–1a-mediated chemotaxis in the deuterostome invertebrate Ciona intestinalis (Urochordata). J Immunol 171:5521–5528PubMedGoogle Scholar
  50. Preissner KT, Bronson RA (2007) The role of multifunctional adhesion molecules in spermatogenesis and sperm function: Lessons from hemostasis and defense? Semin Thromb Hemost 33:100–110. doi:10.1055/s-2006-958468 PubMedCrossRefGoogle Scholar
  51. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L et al (2004) DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 199:1331–1341. doi:10.1084/jem.20032206 PubMedCrossRefGoogle Scholar
  52. Richard F, Lombard M, Dutrillaux B (2003) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11:605–618. doi:10.1023/A:1024957002755 PubMedCrossRefGoogle Scholar
  53. Scanlan MJ, Ritter G, Yin BW, Williams C Jr, Cohen LS, Coplan KA et al (2006) Glycoprotein A34, a novel target for antibody-based cancer immunotherapy. Cancer Immun 6:2PubMedGoogle Scholar
  54. Seth S, Maier MK, Qiu Q, Ravens I, Kremmer E, Forster R et al (2007) The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem Biophys Res Commun 364:959–965. doi:10.1016/j.bbrc.2007.10.102 PubMedCrossRefGoogle Scholar
  55. Simeone A, Avantaggiato V, Moroni MC, Mavilio F, Arra C, Cotelli F et al (1995) Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech Dev 51:83–98. doi:10.1016/0925-4773(95) 96241-M PubMedCrossRefGoogle Scholar
  56. Stafford JL, Bengten E, Du Pasquier L, McIntosh RD, Quiniou SM, Clem LW et al (2006) A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenetics 58:758–773. doi:10.1007/s00251-006-0134-1 PubMedCrossRefGoogle Scholar
  57. Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259. doi:10.1073/pnas.93.26.15254 PubMedCrossRefGoogle Scholar
  58. Suzuki T, Shin IT, Fujiyama A, Kohara Y, Kasahara M (2005) Hagfish leukocytes express a paired receptor family with a variable domain resembling those of antigen receptors. J Immunol 174:2885–2891PubMedGoogle Scholar
  59. Sweeney MC, Wavreille AS, Park J, Butchar JP, Tridandapani S, Pei D (2005) Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 44:14932–14947. doi:10.1021/bi051408h PubMedCrossRefGoogle Scholar
  60. Takai T (2005) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440. doi:10.1111/j.1365-2567.2005.02177.x PubMedCrossRefGoogle Scholar
  61. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27. doi:10.1242/jcs.00167 PubMedCrossRefGoogle Scholar
  62. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W (2003) Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94:655–667. doi:10.1111/j.1349-7006.2003.tb01499.x PubMedCrossRefGoogle Scholar
  63. Viertlboeck BC, Habermann FA, Schmitt R, Groenen MA, Du Pasquier L, Gobel TW (2005) The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 175:385–393PubMedGoogle Scholar
  64. Vivier E, Colonna M (eds) (2006) Immunobiology of Natural Killer Cell receptors. Curr Top Microbiol Immunol, vol 298, Springer, Heidelberg.Google Scholar
  65. Volz A, Wende H, Laun K, Ziegler A (2001) Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol Rev 181:39–51. doi:10.1034/j.1600-065X.2001.1810103.x PubMedCrossRefGoogle Scholar
  66. Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878. doi:10.1126/science.1116887 PubMedCrossRefGoogle Scholar
  67. Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T et al (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc Natl Acad Sci USA 98:6771–6776. doi:10.1073/pnas.121101598 PubMedCrossRefGoogle Scholar
  68. Zucchetti I, Marino R, Pinto MR, Lambris JD, Du Pasquier L, De Santis R (2008) ciCD94–1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation 76:267–282. doi:10.1111/j.1432-0436.2007.00214.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratory of Animal Physiology and EvolutionStazione Zoologica Anton DohrnNaplesItaly
  2. 2.LATP UMR 6632 CNRS Evolution biologique et ModélisationUniversité de ProvenceMarseille Cedex 03France
  3. 3.Institute of Zoology and Evolutionary BiologyUniversity of BaselBaselSwitzerland

Personalised recommendations