Immunogenetics

, Volume 60, Issue 3–4, pp 147–156 | Cite as

Evolution, expression and effectiveness in a cluster of novel bovine β-defensins

  • Paul Cormican
  • Kieran G. Meade
  • Sarah Cahalane
  • Fernando Narciandi
  • Aspinas Chapwanya
  • Andrew T. Lloyd
  • Cliona O’Farrelly
Original Paper

Abstract

The anti-microbial peptides β-defensins constitute a large family of innate immune effector molecules, conserved across a wide species range. In this paper, we describe a systematic search of the sequenced bovine genome to characterise this extensive gene family in Bos taurus, providing an insight into the pattern of conservation of β-defensin genes between species. We have sequenced a sub-set of these newly discovered bovine β-defensin genes and also report expression data for these genes across a range of tissues. We have synthesised the peptide product of one of these genes, bovine β-defensin 123, and found it to be a potent inhibitor of several pathogenic microbes, particularly Escherichia coli and Listeria monocytogenes.

Keywords

Anti-microbial peptide Defensin Bovine Bioinformatic 

Supplementary material

251_2007_269_MOESM1_ESM.txt (5 kb)
Supplementary materialsPeptide sequences for all β-defensins sequences coded for in the Bovine Genome Release 3.1 (TXT 5.03 KB)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Batoni G, Maisetta G, Esin S, Campa M (2006) Human beta-defensin-3: a promising antimicrobial peptide. Mini Rev Med Chem 6:1063–1073PubMedCrossRefGoogle Scholar
  3. Bauer F, Schweimer K, Kluver E, Conejo-Garcia JR, Forssmann WG, Rosch P, Adermann K, Sticht H (2001) Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci 10:2470–2479PubMedCrossRefGoogle Scholar
  4. Bettelheim KA, Bushrod FM, Chandler ME, Cooke EM, O’Farrell S, Shooter RA (1974) Escherichia coli serotype distribution in man and animals. J Hyg (Lond) 73:467–471Google Scholar
  5. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215PubMedCrossRefGoogle Scholar
  6. Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478PubMedCrossRefGoogle Scholar
  7. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  8. Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 88:3952–3956PubMedCrossRefGoogle Scholar
  9. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  10. Elsbach P (2003) What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J Clin Invest 111:1643–1645PubMedGoogle Scholar
  11. Ganz T (1999) Defensins and host defense. Science 286:420–421PubMedCrossRefGoogle Scholar
  12. Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, Seyfert HM (2004) Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 11:174–185PubMedCrossRefGoogle Scholar
  13. Higgs R, Lynn DJ, Gaines S, McMahon J, Tierney J, James T, Lloyd AT, Mulcahy G, O’Farrelly C (2005) The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics 57:90–98PubMedCrossRefGoogle Scholar
  14. Huttner KM, Lambeth MR, Burkin HR, Burkin DJ, Broad TE (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206:85–91PubMedCrossRefGoogle Scholar
  15. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:656–664PubMedCrossRefGoogle Scholar
  16. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  17. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102PubMedCrossRefGoogle Scholar
  18. Luenser K, Ludwig A (2005) Variability and evolution of bovine beta-defensin genes. Genes Immun 6:115–122PubMedCrossRefGoogle Scholar
  19. Lynn DJ, Bradley DG (2007) Discovery of alpha-defensins in basal mammals. Dev Comp Immunol 31:963–967PubMedCrossRefGoogle Scholar
  20. Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E (2006) The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. Faseb J 20:1701–1702PubMedCrossRefGoogle Scholar
  21. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  22. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  23. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G (2005) Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics 23:5–17PubMedCrossRefGoogle Scholar
  24. Radhakrishnan Y, Hamil KG, Yenugu S, Young SL, French FS, Hall SH (2005) Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun 6:203–210PubMedCrossRefGoogle Scholar
  25. Radhakrishnan Y, Fares MA, French FS, Hall SH (2007) Comparative genomic analysis of a mammalian β-defensin gene cluster. Physiol Genomics 30:213–222PubMedCrossRefGoogle Scholar
  26. Roosen S, Exner K, Paul S, Schroder JM, Kalm E, Looft C (2004) Bovine beta-defensins: identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue. Mamm Genome 15:834–842PubMedCrossRefGoogle Scholar
  27. Russell JP, Diamond G, Tarver AP, Scanlin TF, Bevins CL (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun 64:1565–1568PubMedGoogle Scholar
  28. Sarikaya H, Werner-Misof C, Atzkern M, Bruckmaier RM (2005) Distribution of leucocyte populations, and milk composition, in milk fractions of healthy quarters in dairy cows. J Dairy Res 72:486–492PubMedCrossRefGoogle Scholar
  29. Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267:1645–1648PubMedCrossRefGoogle Scholar
  30. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99:2129–2133PubMedCrossRefGoogle Scholar
  31. Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648PubMedGoogle Scholar
  32. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557PubMedCrossRefGoogle Scholar
  33. Semple CA, Gautier P, Taylor K, Dorin JR (2006) The changing of the guard: molecular diversity and rapid evolution of beta-defensins. Mol Divers 10:575–584PubMedCrossRefGoogle Scholar
  34. Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, Farr V, Molenaar A (2004) Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 72:7311–7314PubMedCrossRefGoogle Scholar
  35. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502PubMedCrossRefGoogle Scholar
  36. Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H, Tempst P, Cohen KS, Jones DE, Sweeney RW, Wines M, Hwang S, Bevins CL (1998) Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect Immun 66:1045–1056PubMedGoogle Scholar
  37. Ulmer AJ, Scholz W, Ernst M, Brandt E, Flad HD (1984) Isolation and subfractionation of human peripheral blood mononuclear cells (PBMC) by density gradient centrifugation on Percoll. Immunobiology 166:238–250PubMedGoogle Scholar
  38. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528PubMedCrossRefGoogle Scholar
  39. Zasloff M (2002) Innate immunity, antimicrobial peptides, and protection of the oral cavity. Lancet 360:1116–1117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Paul Cormican
    • 1
  • Kieran G. Meade
    • 1
  • Sarah Cahalane
    • 1
  • Fernando Narciandi
    • 1
  • Aspinas Chapwanya
    • 1
  • Andrew T. Lloyd
    • 1
  • Cliona O’Farrelly
    • 1
  1. 1.School of Biochemistry and ImmunologyTrinity College DublinDublinIreland

Personalised recommendations