, Volume 59, Issue 7, pp 593–602

Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus)

  • Jennifer L. Bollmer
  • F. Hernán Vargas
  • Patricia G. Parker
Original Paper


The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.


Galápagos penguin Spheniscus mendiculus Major histocompatibility complex Genetic bottleneck Trans-species evolution 


  1. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494PubMedCrossRefGoogle Scholar
  2. Aguilar A, Edwards SV, Smith TB, Wayne RK (2006) Patterns of variation in MHC class II β loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds. J Heredity 97:133–142CrossRefGoogle Scholar
  3. Akst EP, Boersma PD, Fleischer RC (2002) A comparison of genetic diversity between the Galápagos penguin and the Magellanic penguin. Conservation Genetics 3:375–383CrossRefGoogle Scholar
  4. Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257PubMedCrossRefGoogle Scholar
  5. Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc R Soc Lond B Biol Sci 273:11–17CrossRefGoogle Scholar
  6. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377PubMedCrossRefGoogle Scholar
  7. BirdLife International (2005) Spheniscus mendiculus. In: IUCN 2006. 2006 IUCN red list of threatened species ( downloaded on 21 January 2007
  8. Boersma PD (1977) An ecological and behavioral study of the Galápagos Penguin. Living Bird 15:43–93Google Scholar
  9. Boersma PD (1978) Breeding patterns of Galápagos penguins as an indicator of oceanographic conditions. Science 200:1481–1483CrossRefPubMedGoogle Scholar
  10. Boersma PD (1998) Population trends of the Galápagos penguin: impacts of El Niño and La Niña. Condor 100:245–253CrossRefGoogle Scholar
  11. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865PubMedCrossRefGoogle Scholar
  12. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39PubMedCrossRefGoogle Scholar
  13. Clarke JR, Kerry KR (1993) Diseases and parasites of penguins. Kor J Polar Res 4:79–96Google Scholar
  14. Clarke JR, Kerry KR (2000) Diseases and parasites of penguins. Penguin Conserv 13:5–24Google Scholar
  15. Cranfield MR, Beall FB, Skjoldager MT, Ialeggio DM (1991) Avian malaria. Spheniscus Penguin Newsletter 4:5–7Google Scholar
  16. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52PubMedCrossRefGoogle Scholar
  17. Ekblom R, Grahn M, Höglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741PubMedGoogle Scholar
  18. Ellis S, Croxall JP, Cooper J (eds) (1998) Penguin conservation assessment and management plan. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MinnesotaGoogle Scholar
  19. Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24:610–619PubMedGoogle Scholar
  20. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  21. Gandini P, Frere E, Boersma PD (1996) Status and conservation of Magellanic penguins Spheniscus magellanicus in Patagonia, Argentina. Bird Conserv Int 6:307–316CrossRefGoogle Scholar
  22. Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722PubMedGoogle Scholar
  23. Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals an extreme interrupted level of nucleotide diversity. Genome Res 10:1579–1586PubMedCrossRefGoogle Scholar
  24. Gilbert DA, Lehman N, O’Brien SJ, Wayne RK (1990) Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344:764–767PubMedCrossRefGoogle Scholar
  25. Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne RK (1999) The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151:797–801PubMedGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  27. Hedrick P (2004) Foxy MHC selection story. Heredity 93:237–238PubMedCrossRefGoogle Scholar
  28. Hedrick PW, Parker KM, Gutiérrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the Arabian oryx. Evolution 54:2145–2151PubMedGoogle Scholar
  29. Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431CrossRefGoogle Scholar
  30. Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–623PubMedCrossRefGoogle Scholar
  31. Jansen R, Ledley FD (1990) Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res 18:5153–5156PubMedCrossRefGoogle Scholar
  32. Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC (2004) Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 13:2157–2168PubMedCrossRefGoogle Scholar
  33. Jones HI, Shellam GR (1999) The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 21:5–10CrossRefGoogle Scholar
  34. Kaufman J, Milne S, Göbel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal-essential major histocompatibility complex. Nature 401:923–925PubMedCrossRefGoogle Scholar
  35. Kikkawa EF, Tsuda TT, Naruse TK, Sumiyama D, Fukuda M, Kurita M, Murata K, Wilson RP, LeMaho Y, Tsuda M, Kulski JK, Inoko H (2005) Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti). Immunogenetics 57:99–107PubMedCrossRefGoogle Scholar
  36. Klein J (1986) Natural history of the histocompatibility complex. Wiley, New YorkGoogle Scholar
  37. Klein J, Satta Y, Takahata N, O’hUigin C (1993) Trans-specific MHC polymorphism and the origin of species in primates. J Med Primatol 22:57–64PubMedGoogle Scholar
  38. Knapp LA (2005) Denaturing gradient gel electrophoresis and its use in the detection of major histocompatibility complex polymorphism. Tissue Antigens 65:211–219PubMedCrossRefGoogle Scholar
  39. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  40. L’Abbe D, Belmaaza A, Decary F, Chartrand P (1992) Elimination of heteroduplex artifacts when sequencing HLA genes amplified by polymerase chain reaction (PCR). Immunogenetics 35:395–397PubMedCrossRefGoogle Scholar
  41. Lehman N, Decker DJ, Stewart BS (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among Antarctic phocid pinnipeds. J Mammal 85:1215–1224CrossRefGoogle Scholar
  42. Longeri M, Zanotti M, Damiani G (2002) Recombinant DRB sequences produced by mismatch repair of heteroduplexes during cloning in Escherichia coli. Eur J Immunogenet 29:517–523PubMedCrossRefGoogle Scholar
  43. Luna-Jorquera G, Garthe S, Sepulveda FG, Weichler T, Vásquez JA (2000) Population size of Humboldt penguins assessed by combined terrestrial and at-sea counts. Waterbirds 23:506–510Google Scholar
  44. Merkel J, Jones HI, Whiteman NK, Gottdenker N, Vargas H, Travis EK, Miller RE, Parker PG (2007) Microfilariae in Galápagos penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi): genetics, morphology and prevalence. J Parasitol (in press)Google Scholar
  45. Miller HC, Lambert DM (2004a) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191PubMedGoogle Scholar
  46. Miller HC, Lambert DM (2004b) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721PubMedCrossRefGoogle Scholar
  47. Miller GD, Hofkin BV, Snell H, Hahn A, Miller RD (2001) Avian malaria and Marek’s disease: potential threats to Galapagos penguins Spheniscus mendiculus. Mar Ornithol 29:43–46Google Scholar
  48. Murray BW, White BN (1998) Sequence variation at the major histocompatibility complex DRB loci in beluga (Delphinapterus leucas) and narwhal (Monodon monoceros). Immunogenetics 48:242–252PubMedCrossRefGoogle Scholar
  49. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  50. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  51. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74PubMedCrossRefGoogle Scholar
  52. Parker PG, Whiteman NK, Miller RE (2006) Conservation medicine on the Galápagos Islands: partnerships among behavioral, population, and veterinary scientists. Auk 123:625–638CrossRefGoogle Scholar
  53. Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164CrossRefGoogle Scholar
  54. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  55. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529PubMedCrossRefGoogle Scholar
  56. Riedinger MA, Steinitz-Kannan M, Last WM, Brenner M (2002) A ∼6100 14C yr record of El Niño activity from the Galápagos Islands. J Paleolimnol 27:1–7CrossRefGoogle Scholar
  57. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  58. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  59. Seddon JM, Baverstock PR (1999) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079PubMedCrossRefGoogle Scholar
  60. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236PubMedCrossRefGoogle Scholar
  61. Slade RW (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc R Soc Lond B Biol Sci 249:163–171CrossRefGoogle Scholar
  62. Takahata N (1990) A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci USA 87:2419–2423PubMedCrossRefGoogle Scholar
  63. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978PubMedGoogle Scholar
  64. Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2006) Hematology, serum chemistry, and serology of Galápagos penguins in the Galápagos Islands, Ecuador. J Wildl Dis 42:625–632PubMedGoogle Scholar
  65. Trowsdale J, Groves V, Arnason A (1989) Limited MHC polymorphism in whales. Immunogenetics 29:19–24PubMedCrossRefGoogle Scholar
  66. Tsuda TT, Tsuda M, Naruse T, Kawata H, Ando A, Shiina T, Fukuda M, Kurita M, LeMaho I, Kulski JK, Inoko H (2001) Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 53:712–716PubMedCrossRefGoogle Scholar
  67. Valle CA, Coulter MC (1987) Present status of the flightless cormorant, Galapagos penguin and greater flamingo populations in the Galapagos Islands, Ecuador, after the 1982–83 El Niño. Condor 89:276–281CrossRefGoogle Scholar
  68. Vargas H, Lougheed C, Snell H (2005a) Population size and trends of the Galápagos penguin Spheniscus mendiculus. Ibis 147:367–374CrossRefGoogle Scholar
  69. Vargas H, Steinfurth A, Larrea C, Jiménez G, Llerena W (2005b) Penguin and cormorant census 2005. Report to the Charles Darwin Research Station and the Galápagos National Park Service, OxfordGoogle Scholar
  70. Vargas FH, Harrison S, Rea S, Macdonald DW (2006) Biological effects of El Niño on the Galápagos penguin. Biol Conserv 127:107–114CrossRefGoogle Scholar
  71. Vincek V, O’hUigin C, Satta Y, Takahata N, Boag PT, Grant PR, Grant BR, Klein J (1997) How large was the founding population of Darwin’s finches? Proc R Soc Lond B Biol Sci 264:111–118CrossRefGoogle Scholar
  72. Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542PubMedCrossRefGoogle Scholar
  73. Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147:844–847CrossRefGoogle Scholar
  74. Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9:5, available online
  75. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jennifer L. Bollmer
    • 1
  • F. Hernán Vargas
    • 2
    • 3
  • Patricia G. Parker
    • 1
  1. 1.Department of BiologyUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Charles Darwin FoundationIsla Santa CruzEcuador
  3. 3.Department of Zoology, Wildlife Conservation Research UnitUniversity of OxfordOxfordUK
  4. 4.The Peregrine Fund/Fondo Peregrino Panamá ApdoPanamá CityRepública de Panamá

Personalised recommendations