, Volume 59, Issue 5, pp 333–348 | Cite as

Molecular characterization of the immune system: emergence of proteins, processes, and domains

  • Csaba Ortutay
  • Markku Siermala
  • Mauno Vihinen
Original Paper


Many genes and proteins are required to carry out the processes of innate and adaptive immunity. For many studies, including systems biology, it is necessary to have a clear and comprehensive definition of the immune system, including the genes and proteins that take part in immunological processes. We have identified and cataloged a large portion of the human immunology-related genes, which we call the essential immunome. The 847 identified genes and proteins were annotated, and their chromosomal localizations were compared to the mouse genome. Relation to disease was also taken into account. We identified numerous pseudogenes, many of which are expressed, and found two putative new genes. We also carried out an evolutionary analysis of immune processes based on gene orthologs to gain an overview of the evolutionary past and molecular present of the human immune system. A list of genes and proteins were compiled. A comprehensive characterization of the member genes and proteins, including the corresponding pseudogenes is presented. Immunome genes were found to have three types of emergence in independent studies of their ontologies, domains, and functions.


Immune system Computational biology Systems biology Evolution 



We thank Martti Tolvanen for sharing with us his expertise on the content of immunome list, and Kathryn Rannikko for her help in collecting and handling the immunome data. We also thank the Medical Research Fund of Tampere University Hospital and the CAMKIN Research Network of the European Commission for the financial support.

Supplementary material


  1. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, Fong S, van Lookeren Campagne M, Godowski P, Williams PM, Chan AC, Clark HF (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331PubMedCrossRefGoogle Scholar
  2. Aderem A, Smith KD (2004) A systems approach to dissecting immunity and inflammation. Semin Immunol 16:55–67PubMedCrossRefGoogle Scholar
  3. Arakawa H, Buerstedde JM (2004) Immunoglobulin gene conversion: insights from bursal B cells and the DT40 cell line. Dev Dyn 229:458–464PubMedCrossRefGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  5. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979PubMedCrossRefGoogle Scholar
  6. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151PubMedCrossRefGoogle Scholar
  7. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  8. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G (2004) The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA 101:11707–11712PubMedCrossRefGoogle Scholar
  9. Carrington M (2003) The KIR gene cluster. National Library of Medicine U.S. National Center for Biotechnology Information, BethesdaGoogle Scholar
  10. Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL–DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368PubMedCrossRefGoogle Scholar
  11. Cunchillos C, Lecointre G (2003) Evolution of amino acid metabolism inferred through cladistic analysis. J Biol Chem 278:47960–47970PubMedCrossRefGoogle Scholar
  12. De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K, Weissman IL (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–459PubMedCrossRefGoogle Scholar
  13. Du Pasquier L (2004) Innate immunity in early chordates and the appearance of adaptive immunity. C R Biol 327:591–601PubMedCrossRefGoogle Scholar
  14. Eason DD, Cannon JP, Haire RN, Rast JP, Ostrov DA, Litman GW (2004) Mechanisms of antigen receptor evolution. Semin Immunol 16:215–226PubMedCrossRefGoogle Scholar
  15. Feolo M, Helmberg W, Sherry S, Maglott DR (2000) NCBI genetic resources supporting immunogenetic research. Rev Immunogenet 2:461–467PubMedGoogle Scholar
  16. Friedman R, Hughes AL (2002) Molecular evolution of the NF–κB signaling system. Immunogenetics 53:964–974PubMedCrossRefGoogle Scholar
  17. Harrison PM, Gerstein M (2002) Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 318:1155–1174PubMedCrossRefGoogle Scholar
  18. Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, Bertone P, Echols N, Johnson T, Gerstein M (2002) Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 12:272–280PubMedCrossRefGoogle Scholar
  19. Huising MO, Stet RJ, Savelkoul HF, Verburg-van Kemenade BM (2004) The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Dev Comp Immunol 28:395–413PubMedCrossRefGoogle Scholar
  20. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486PubMedCrossRefGoogle Scholar
  21. Hutton JJ, Jegga AG, Kong S, Gupta A, Ebert C, Williams S, Katz JD, Aronow BJ (2004) Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system. BMC Genomics 5:82PubMedCrossRefGoogle Scholar
  22. Hyatt G, Melamed R, Park R, Seguritan R, Laplace C, Poirot L, Zucchelli S, Obst R, Matos M, Venanzi E, Goldrath A, Nguyen L, Luckey J, Yamagata T, Herman A, Jacobs J, Mathis D, Benoist C (2006) Gene expression microarrays: glimpses of the immunological genome. Nat Immunol 7:686–691PubMedCrossRefGoogle Scholar
  23. Janeway CA, Travers P (2001) Immunobiology. Garland, New YorkGoogle Scholar
  24. Kasahara M, Suzuki T, Pasquier LD (2004) On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol 25:105–111PubMedCrossRefGoogle Scholar
  25. Kelley J, de Bono B, Trowsdale J (2005) IRIS: a database surveying known human immune system genes. Genomics 85:503–511PubMedCrossRefGoogle Scholar
  26. Khalturin K, Bosch TC (2007) Self/nonself discrimination at the basis of chordate evolution: limits on molecular conservation. Curr Opin Immunol 19:4–9Google Scholar
  27. Krause CD, Pestka S (2005) Evolution of the class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol Ther 106:299–346PubMedCrossRefGoogle Scholar
  28. Lee Y, Sultana R, Pertea G, Cho J, Karamycheva S, Tsai J, Parvizi B, Cheung F, Antonescu V, White J, Holt I, Liang F, Quackenbush J (2002) Cross-referencing eukaryotic genomes: TIGR orthologous gene alignments (TOGA). Genome Res 12:493–502PubMedCrossRefGoogle Scholar
  29. Lefranc MP, Giudicelli V, Ginestoux C, Bosc N, Folch G, Guiraudou D, Jabado-Michaloud J, Magris S, Scaviner D, Thouvenin V, Combres K, Girod D, Jeanjean S, Protat C, Yousfi-Monod M, Duprat E, Kaas Q, Pommie C, Chaume D, Lefranc G (2004) IMGT—ontology for immunogenetics and immunoinformatics. In Silico Biol 4:17–29PubMedGoogle Scholar
  30. Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5:866–879PubMedCrossRefGoogle Scholar
  31. Marchalonis JJ, Schluter SF (1994) Development of an immune system. In: Beck G (ed) Primordial immunity: foundations for the vertebrate immune system. New York Academy of Sciences, New York, pp 1–12Google Scholar
  32. Menezes H, Jared C (2002) Immunity in plants and animals: common ends through different means using similar tools. Comp Biochem Physiol C Toxicol Pharmacol 132:1–7PubMedCrossRefGoogle Scholar
  33. Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci USA 102:8674–8679PubMedCrossRefGoogle Scholar
  34. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  35. Nicholas HR, Hodgkin J (2004) Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Mol Immunol 41:479–493PubMedCrossRefGoogle Scholar
  36. Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58:701–713PubMedCrossRefGoogle Scholar
  37. Nonaka M, Yoshizaki F (2004) Evolution of the complement system. Mol Immunol 40:897–902PubMedCrossRefGoogle Scholar
  38. Ollila J, Vihinen M (2003) Stimulation-induced gene expression in Ramos B-cells. Genes Immun 4:343–350PubMedCrossRefGoogle Scholar
  39. Parra G, Blanco E, Guigo R (2000) GeneID in Drosophila. Genome Res 10:511–515PubMedCrossRefGoogle Scholar
  40. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219PubMedGoogle Scholar
  41. Pederson T (1999) The immunome. Mol Immunol 36:1127–1128PubMedCrossRefGoogle Scholar
  42. Piirilä H, Väliaho J, Vihinen M (2006) Immunodeficiency mutation databases (IDbases). Human Mutat 27:1200–1208CrossRefGoogle Scholar
  43. Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052PubMedCrossRefGoogle Scholar
  44. Rinkevich B (2004) Primitive immune systems: are your ways my ways? Immunol Rev 198:25–35PubMedCrossRefGoogle Scholar
  45. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–471PubMedCrossRefGoogle Scholar
  46. Royet J (2004) Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol Immunol 41:1063–1075PubMedCrossRefGoogle Scholar
  47. Scherf M, Klingenhoff A, Werner T (2000) Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: a novel context analysis approach. J Mol Biol 297:599–606PubMedCrossRefGoogle Scholar
  48. Schulenburg H, Kurz CL, Ewbank JJ (2004) Evolution of the innate immune system: the worm perspective. Immunol Rev 198:36–58PubMedCrossRefGoogle Scholar
  49. Smit AFA, Hubley R, Green P (1996–2004) RepeatMasker open-3.0Google Scholar
  50. Smith LC (2001) The complement system in sea urchins. In: Beck G (ed) Phylogenetic perspectives on the vertebrate immune system. Springer, Berlin Heidelberg New York, pp 363–372Google Scholar
  51. Smith KD, Bolouri H (2005) Dissecting innate immune responses with the tools of systems biology. Curr Opin Immunol 17:49–54PubMedCrossRefGoogle Scholar
  52. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD et al (2002) The Bioperl toolkit: perl modules for the life sciences. Genome Res 12:1611–1618PubMedCrossRefGoogle Scholar
  53. Staudt LM, Brown PO (2000) Genomic views of the immune system*. Annu Rev Immunol 18:829–859PubMedCrossRefGoogle Scholar
  54. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  55. Trowsdale J, Parham P (2004) Mini-review: defense strategies and immunity-related genes. Eur J Immunol 34:7–17PubMedCrossRefGoogle Scholar
  56. Väliaho J, Pusa M, Ylinen T, Vihinen M (2002) IDR: the ImmunoDeficiency resource. Nucleic Acids Res 30:232–234PubMedCrossRefGoogle Scholar
  57. Vargas-Madrazo E, Almagro JC, Lara-Ochoa F (1995) Structural repertoire in VH pseudogenes of immunoglobulins: comparison with human germline genes and human amino acid sequences. J Mol Biol 246:74–81PubMedCrossRefGoogle Scholar
  58. Vetvicka V, Sima P (1998) Evolutionary mechanisms of defense reactions. Birkhuser, BaselGoogle Scholar
  59. Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarström L, Hershfield MS, Heyworth PG, Hsu AP, Lähdesmäki A, Lappalainen I, Notarangelo LD, Puck JM, Reith W, Roos D, Schumacher RF, Schwarz K, Vezzoni P, Villa A, Väliaho J et al (2001) Primary immunodeficiency mutation databases. Adv Genet 43:103–188PubMedGoogle Scholar
  60. Yamaoka K, Saharinen P, Pesu M, Holt VE III, Silvennoinen O, O’Shea JJ (2004) The Janus kinases (Jaks). Genome Biol 5:253PubMedCrossRefGoogle Scholar
  61. Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proc Natl Acad Sci USA 102:373–378PubMedCrossRefGoogle Scholar
  62. Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12:1466–1482PubMedCrossRefGoogle Scholar
  63. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558PubMedCrossRefGoogle Scholar
  64. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, Buckley C, Clark G, Drbal K, Engel P, Hart D, Horejsi V, Isacke C, Macardle P, Malavasi F, Mason D, Olive D, Saalmueller A, Schlossman SF, Schwartz-Albiez R et al (2005) CD molecules 2005: human cell differentiation molecules. Blood 106:3123–3126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Csaba Ortutay
    • 1
  • Markku Siermala
    • 1
  • Mauno Vihinen
    • 1
    • 2
  1. 1.Institute of Medical TechnologyUniversity of TampereTampereFinland
  2. 2.Research UnitTampere University HospitalTampereFinland

Personalised recommendations