Advertisement

Immunogenetics

, Volume 59, Issue 3, pp 225–232 | Cite as

Evidence of positive selection on the Atlantic salmon CD3γδ gene

  • Fernando Cruz
  • Daniel G. Bradley
  • David J. LynnEmail author
Original Paper

Abstract

Atlantic salmon are typically anadromous, spending the majority of their lifetime in oceans and returning to fresh water to breed. This diversity of environments likely results in strong selective forces shaping their genome. In this paper, we present the first genomics approach to detect positive selection operating on the Salmo salar (salmon) lineage, an important aquaculture species. We identify a panel of candidate genes that may have been subject to adaptive evolution in this species. In particular, we identify a robust signature of positive selection operating on the salmon CD3γδ gene, which encodes one of the protein chains essential for formation of the T-cell receptor complex and for T-cell activation. Furthermore, we identified the particular codon sites that have been subject to positive selection in fish and highlight two sites flanking an important N-glycosylation site in this molecule.

Keywords

Adaptive evolution Positive selection CD3γδ Glycosylation Salmon 

Notes

Acknowledgement

This research was supported by a postdoctoral fellowship of Xunta de Galicia PGIDIT 2005 to Fernando Cruz. David J. Lynn is supported in part by Science Foundation Ireland grant no. 02-IN.1-B256. Thanks go to Professor Ken Wolfe, Smurfit Institute of Genetics, Trinity College, Dublin, for his helpful comments.

Supplementary material

251_2006_188_MOESM1_ESM.xls (38 kb)
ESM1 (XLS 38.4 kb)
251_2006_188_MOESM2_ESM.xls (24 kb)
ESM2 (XLS 24.5 kb)

References

  1. Allendorf FW, Danzmann RG (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083–1092PubMedGoogle Scholar
  2. Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–53Google Scholar
  3. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592PubMedGoogle Scholar
  5. Araki K, Suetake H, Kikuchi K, Suzuki Y (2005) Characterization and expression analysis of CD3e and CD3gd in fugu, Takifugu rubripes. Immunogenetics 57:158–163PubMedCrossRefGoogle Scholar
  6. Bernot A, Auffray C (1991) Primary structure and ontogeny of an avian CD3 transcript. PNAS 88:2550–2554PubMedCrossRefGoogle Scholar
  7. Chinabut S, Puttinaowarat S (2005) The choice of disease control strategies to secure international market access for aquaculture products. Dev Biol (Basel) 121:255–261Google Scholar
  8. Clevers H, Alarcon B, Wileman T, Terhorst C (1988) The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 6:629–662PubMedCrossRefGoogle Scholar
  9. Dann S, Ted Allison W, Levin D, Taylor J, Hawryshyn C (2004) Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in Oncorhynchus. J Mol Evol 58:400–412PubMedCrossRefGoogle Scholar
  10. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409:733–739PubMedCrossRefGoogle Scholar
  11. Dietrich J, Neisig A, Hou X, Wegener A, Gajhede M, Geisler C (1996) Role of CD3 gamma in T cell receptor assembly. J Cell Biol 132:299–310PubMedCrossRefGoogle Scholar
  12. Dzialo R, Cooper M (1997) An amphibian CD3 homologue of the mammalian CD3 g and d genes. Eur J Immunol 27:1640–1647PubMedGoogle Scholar
  13. Ford MJ (2001) Molecular evolution of transferrin: evidence for positive selection in salmonids. Mol Biol Evol 18:639–647PubMedGoogle Scholar
  14. Gobel TWF, Dangy J-P (2000) Evidence for a stepwise evolution of the CD3 family. J Immunol 164:879–883PubMedGoogle Scholar
  15. Hayes SM, Laky K, El-Khoury D, Kappes DJ, Fowlkes BJ, Love PE (2002) Activation-induced modification in the CD3 complex of the gd T cell receptor. J Exp Med 196:1355–1361PubMedCrossRefGoogle Scholar
  16. Hendry AP, Stearns SC (2004) Evolution illuminated: salmon and their relatives. Oxford University Press, Oxford, New YorkGoogle Scholar
  17. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203PubMedCrossRefGoogle Scholar
  18. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, Heidelberg, Germany, pp 138–148Google Scholar
  19. Johnson KR, Wright JE Jr, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591PubMedGoogle Scholar
  20. Krissansen G, Owen M, Fink P, Crumpton M (1987) Molecular cloning of the cDNA encoding the T3 gamma subunit of the mouse T3/T cell antigen receptor complex. J Immunol 138:3513–3518PubMedGoogle Scholar
  21. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920PubMedCrossRefGoogle Scholar
  22. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  23. Lee J-Y, Tada T, Hirono I, Aoki T (1998) Molecular cloning and evolution of transferrin cDNAs in salmonids. Mol Mar Biol Biotechnol 7:287–293PubMedGoogle Scholar
  24. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  25. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652PubMedCrossRefGoogle Scholar
  26. Phillips R, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc (London) 76:1–25CrossRefGoogle Scholar
  27. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902PubMedCrossRefGoogle Scholar
  28. Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, Hunt P, Shukin R, Zeznik JA, Nelson C, Jones SRM, Smailus DE, Jones SJM, Schein JE, Marra MA, Butterfield YSN, Stott JM, Ng SHS, Davidson WS, Koop BF (2004) Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res 14:478–490PubMedCrossRefGoogle Scholar
  29. Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA, DiGennaro JA, Fetrow JS, Dwek RA, Wilson IA (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293:351–366PubMedCrossRefGoogle Scholar
  30. Saitoh K, Hayashizaki K, Yokoyama Y, Asahida T, Toyohara H, Yamashita Y (2000) Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationship. J Hered 91:271–278PubMedCrossRefGoogle Scholar
  31. Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm L-E, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345PubMedGoogle Scholar
  32. Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 7:20PubMedCrossRefGoogle Scholar
  33. Suzumoto BK, Schreck CB, McIntyre JD (1977) Relative resistances of three transferrin genotypes of coho salmon (Oncorhynchus kisutch) and their hematological responses to bacterial kidney disease. J Fish Res Board Can 34:1–8Google Scholar
  34. Tunnacliffe A, Olsson C, Buluwela L, Rabbitts TH (1988) Organization of the human CD3 locus on chromosome 11. Eur J Immunol 18:1639–1642PubMedGoogle Scholar
  35. Winter GW, Schreck CB, McIntyre JD (1980) Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis. Fish Bull 77:795–802Google Scholar
  36. Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051PubMedCrossRefGoogle Scholar
  37. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  38. Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genet Dev 12:688–694PubMedCrossRefGoogle Scholar
  39. Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar
  40. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fernando Cruz
    • 1
  • Daniel G. Bradley
    • 1
  • David J. Lynn
    • 1
    Email author
  1. 1.Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland

Personalised recommendations