Immunogenetics

, Volume 58, Issue 12, pp 995–1001 | Cite as

MHC class I allele frequencies in pigtail macaques of diverse origin

  • Bridget F. Pratt
  • David H. O’Connor
  • Bernard A. P. Lafont
  • Joseph L. Mankowski
  • Caroline S. Fernandez
  • Retno Triastuti
  • Andrew G. Brooks
  • Stephen J. Kent
  • Miranda Z. Smith
Brief Communication

Abstract

Pigtail macaques (Macaca nemestrina) are an increasingly common primate model for the study of human AIDS. Major Histocompatibility complex (MHC) class I-restricted CD8+ T cell responses are a critical part of the adaptive immune response to HIV-1 in humans and simian immunodeficiency virus (SIV) in macaques; however, MHC class I alleles have not yet been comprehensively characterized in pigtail macaques. The frequencies of ten previously defined alleles (four Mane-A and six Mane-B) were investigated in detail in 109 pigtail macaques using reference strand-mediated conformational analysis (RSCA). The macaques were derived from three separate breeding colonies in the USA, Indonesia and Australia, and allele frequencies were analysed within and between these groups. Mane-A*10, an allele that restricts the immunodominant SIV Gag epitope KP9, was the most common allele, present in 32.1% of the animals overall, with similar frequencies across the three cohorts. Additionally, RSCA identified a new allele (Mane-A*17) common to three Indonesian pigtail macaques responding to the same Gag CD8+ T cell epitope. This broad characterization of common MHC class I alleles in more than 100 pigtail macaques further develops this animal model for the study of virus-specific CD8+ T cell responses.

Keywords

Pigtail macaques MHC class I Reference strand-mediated conformational analysis (RSCA) CD8+ T cell 

References

  1. Arguello JR, Madrigal JA (1999) HLA typing by reference strand-mediated conformation analysis (RSCA). Rev Immunogenet 1:209–219PubMedGoogle Scholar
  2. Baquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suarez C, Patarroyo ME, Parra-Lopez C (2006) Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics 58:590–597PubMedCrossRefGoogle Scholar
  3. Batten CJ, Rose RD, Wilson KM, Agy MB, Chea S, Stratov I, Montefiori DC, Kent SJ (2006) Comparative evaluation of simian, simian-human, and human immunodeficiency virus infections in the pigtail macaque (Macaca nemestrina) model. AIDS Res Hum Retrovir 22:580–588PubMedCrossRefGoogle Scholar
  4. Carruth LM, Zink MC, Tarwater PM, Miller MD, Li M, Queen LA, Mankowski JL, Shen A, Siliciano RF, Clements JE (2005) SIV-specific T lymphocyte responses in PBMC and lymphoid tissues of SIV-infected pigtailed macaques during suppressive combination antiretroviral therapy. J Med Primatol 34:109–121PubMedCrossRefGoogle Scholar
  5. Cohen J (2000) AIDS research. Vaccine studies stymied by shortage of animals. Science 287:959–960PubMedCrossRefGoogle Scholar
  6. Dale CJ, De Rose R, Stratov I, Chea S, Montefiori D, Thomson SA, Ramshaw IA, Coupar BE, Boyle DB, Law M, Kent SJ (2004) Efficacy of DNA and fowlpoxvirus prime/boost vaccines for simian/human immunodeficiency virus. J Virol 78:13819–13828PubMedCrossRefGoogle Scholar
  7. De Rose R, Chea S, Dale CJ, Reece J, Fernandez CS, Wilson KM, Thomson S, Ramshaw IA, Coupar BE, Boyle DB, Sullivan MT, Kent SJ (2005) Subtype AE HIV-1 DNA and recombinant fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques. Vaccine 23:1949–1956PubMedCrossRefGoogle Scholar
  8. Drake GJ, Kennedy LJ, Auty HK, Ryvar R, Ollier WE, Kitchener AC, Freeman AR, Radford AD (2004) The use of reference strand-mediated conformational analysis for the study of cheetah (Acinonyx jubatus) feline leucocyte antigen class II DRB polymorphisms. Mol Ecol 13:221–229PubMedCrossRefGoogle Scholar
  9. Kennedy LJ, Ryvar R, Brown JJ, Ollier WE, Radford AD (2003) Resolution of complex feline leukocyte antigen DRB loci by reference strand-mediated conformational analysis (RSCA). Tissue Antigens 62:313–323PubMedCrossRefGoogle Scholar
  10. Kent SJ, Dale CJ, Preiss S, Mills J, Campagna D, Purcell, DFJ (2001) Vaccination with attenuated simian immunodeficiency virus by DNA inoculation. J Virol 75:11930–11934PubMedCrossRefGoogle Scholar
  11. Krebs KC, Jin Z, Rudersdorf R, Hughes AL, O’Connor DH (2005) Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques. J Immunol 175:5230–5239PubMedGoogle Scholar
  12. Lafont BA, Buckler-White A, Plishka R, Buckler C, Martin MA (2004) Pig-tailed macaques (Macaca nemestrina) possess six MHC-E families that are conserved among macaque species: implication for their binding to natural killer receptor variants. Immunogenetics 56:142–154PubMedCrossRefGoogle Scholar
  13. Lifson JD, Rossio JL, Piatak M Jr, Parks T, Li L, Kiser R, Coalter V, Fisher B, Flynn BM, Czajak S, Hirsch VM, Reimann KA, Schmitz JE, Ghrayeb J, Bischofberger N, Nowak MA, Desrosiers RC, Wodarz D (2001) Role of CD8 (+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J Virol 75:10187–10199PubMedCrossRefGoogle Scholar
  14. Miller MD, Yamamoto H, Hughes AL, Watkins DI, Letvin NL (1991) Definition of an epitope and MHC class I molecule recognized by Gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. J Immunol 147:320–329PubMedGoogle Scholar
  15. Mothe BR, Horton H, Carter DK, Allen TM, Liebl ME, Skinner P, Vogel TU, Fuenger S, Vielhuber K, Rehrauer W, Wilson N, Franchini G, Altman JD, Haase A, Picker LJ, Allison DB, Watkins DI (2002) Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection. J Virol 76:875–884PubMedCrossRefGoogle Scholar
  16. Pamungkas J, De Rose R, Iskandriati D, Noviana R, Paramastri Y, Dale CJ, Shoobridge M, Medveczky CJ, Ramshaw IA, Thomson SA, Kent SJ (2005) Comparison of whole gene and whole virus scrambled antigen approaches for DNA and FPV boost HIV-1 vaccine regimens in macaques. AIDS Res Hum Retrovir 21:292–300PubMedCrossRefGoogle Scholar
  17. Reimann KA, Parker RA, Seaman MS, Beaudry K, Beddall M, Peterson L, Williams KC, Veazey RS, Montefiori DC, Mascola JR, Nabel GJ, Letvin NL (2005) Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J Virol 79:8878–8885PubMedCrossRefGoogle Scholar
  18. Smith MZ, Dale CJ, De Rose R, Stratov I, Fernandez CS, Brooks AG, Weinfurter JT, Krebs K, Riek C, Watkins DI, O’Connor DH, Kent SJ (2005a) Analysis of pigtail macaque major histocompatibility complex class I molecules presenting immunodominant simian immunodeficiency virus epitopes. J Virol 79:684–695CrossRefGoogle Scholar
  19. Smith MZ, Fernandez CS, Chung A, Dale CJ, De Rose R, Lin J, Brooks AG, Krebs KC, Watkins DI, O’Connor DH, Davenport MP, Kent SJ (2005b) The pigtail macaque MHC class I allele Mane-A*10 presents an immundominant SIV Gag epitope: identification, tetramer development and implications of immune escape and reversion. J Med Primatol 34:282–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bridget F. Pratt
    • 1
  • David H. O’Connor
    • 2
  • Bernard A. P. Lafont
    • 3
  • Joseph L. Mankowski
    • 4
  • Caroline S. Fernandez
    • 1
  • Retno Triastuti
    • 5
  • Andrew G. Brooks
    • 1
  • Stephen J. Kent
    • 1
  • Miranda Z. Smith
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonUSA
  3. 3.Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA
  4. 4.Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUSA
  5. 5.Primate Research CenterBogor Agricultural UniversityBogorIndonesia

Personalised recommendations