Immunogenetics

, Volume 58, Issue 8, pp 680–692 | Cite as

Differential TCR gene usage between WC1and WC1+ruminant γδT cell subpopulations including those responding to bacterial antigen

  • Seth L. Blumerman
  • Carolyn T. A. Herzig
  • Aric N. Rogers
  • Janice C. Telfer
  • Cynthia L. Baldwin
Original Paper

Abstract

Ruminant γδ T cells are divided into subpopulations based on the presence or absence of WC1 co-receptors (scavenger-receptor-cysteine-rich family members uniquely expressed on γδ T cells). Evidence suggests WC1+ are inflammatory while WC1 are regulatory and that they also differ in their tissue distribution. Recently, this paradigm was refined further as cells that produce interferon-γ and proliferate to autologous antigens, leptospira antigens, or IL-12 were largely found within the WC1+ subpopulation that bears the WC1.1 antigenic epitope but not that bearing the WC1.2 epitope. Here, the T cell receptor gene expression by these different subpopulations (WC1, WC1.1+, and WC1.2+) was compared using flow cytometrically-purified cells and reverse transcriptase-polymerase chain reaction (RT-PCR). The WC1 γδ T cells had transcripts for all 11 possible combinations of the TRG subgroup V and C genes while those in both WC1+ subpopulations were restricted to TRGV3–TRGC5 and TRGV7–TRGC5. In contrast, all three subpopulations expressed transcripts from all four known bovine TRDV genes. Further analysis of the WC1+ γδ T cells that proliferated in leptospira antigen-stimulated cultures indicated that they do not represent a unique subpopulation within the larger WC1+ population based on their TCR gene usage. Moreover, sequencing of 65 transcripts showed that their junctional regions were diverse as TRGJ5-1, TRGJ5-2, TRDJ1, and TRDJ3 were used, and CDR3s ranged from 9  to 24 amino acids. The restricted but shared γδ TCR gene usage for WC1.1+, WC1.2+, and WC1+-antigen-responsive cells leaves open the possibility that the WC1 co-receptor is an important determining element in the activation process and subsequent response.

Keywords

γδ T cells γδ T cell receptor γδ T cell receptor genes WC1 Ruminant 

References

  1. Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP (1988) Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847PubMedCrossRefGoogle Scholar
  2. Ayoub IA, Yang TJ (1996) Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: a longitudinal study. Dev Comp Immunol 20:353–363PubMedCrossRefGoogle Scholar
  3. Baldwin CL, Sathiyaseelan T, Rocchi M, McKeever D (2000) Rapid changes occur in the percentage of circulating bovine WC1+ γδ Th1 cells. Res Vet Sci 69:175–180PubMedCrossRefGoogle Scholar
  4. Baldwin CL, Sathiyaseelan T, Naiman B, White AM, Brown R, Blumerman S, Rogers A, Black SJ (2002) Activation of bovine peripheral blood γδ T cells for cell division and IFN-γ production. Vet Immunol Immunopathol 87:251–259PubMedCrossRefGoogle Scholar
  5. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedCrossRefGoogle Scholar
  6. Bikker FJ, Ligtenberg AJ, End C, Renner M, Blaich S, Lyer S, Wittig R, van’t Hof W, Veerman EC, Nazmi K, Blieck-Hogervorst JM, Kioschis P, Nieuw Amerongen AV, Poustka A, Mollenhauer J (2004) Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem 279:47699–47703PubMedCrossRefGoogle Scholar
  7. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–90PubMedCrossRefGoogle Scholar
  8. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedCrossRefGoogle Scholar
  9. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H (1995) Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 154:998–1006PubMedGoogle Scholar
  10. Carding SR, Egan PJ (2002) γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345PubMedCrossRefGoogle Scholar
  11. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–500PubMedCrossRefGoogle Scholar
  12. Chien YH, Jores R, Crowley MP (1996) Recognition by gamma/delta T cells. Annu Rev Immunol 14:511–532PubMedCrossRefGoogle Scholar
  13. Clevers H, MacHugh ND, Bensaid A, Dunlap S, Baldwin CL, Kaushal A, Iams K, Howard CJ, Morrison WI (1990) Identification of a bovine surface antigen uniquely expressed on CD4–CD8- T cell receptor gamma/delta+ T lymphocytes. Eur J Immunol 20:809–817PubMedGoogle Scholar
  14. Crocker G, Sopp P, Parsons K, Davis WC, Howard CJ (1993) Analysis of the gamma/delta T cell restricted antigen WC1. Vet Immunol Immunopathol 39:137–144PubMedCrossRefGoogle Scholar
  15. Das H, Sugita M, Brenner MB (2004) Mechanisms of Vdelta1 gammadelta T cell activation by microbial components. J Immunol 172:6578–6586PubMedGoogle Scholar
  16. Daubenberger CA, Taracha EL, Gaidulis L, Davis WC, McKeever DJ (1999) Bovine γδ T-cell responses to the intracellular protozoan parasite Theileria parva. Infect Immun 67:2241–2249PubMedGoogle Scholar
  17. Egan PJ, Carding SR (2000) Down modulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J Exp Med 191:2145–2158PubMedCrossRefGoogle Scholar
  18. Elliott JF, Rock EP, Patten PA, Davis MM, Chien YH (1988) The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature 331:627–631PubMedCrossRefGoogle Scholar
  19. Glusman G, Rowen L, Lee I, Boysen C, Roach JC, Smit AF, Wang K, Koop BF, Hood L (2001) Comparative genomics of the human and mouse T cell receptor loci. Immunity 15:337–349PubMedCrossRefGoogle Scholar
  20. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740PubMedCrossRefGoogle Scholar
  21. Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL (1996) Modulation of WC1, a lineage-specific cell surface molecule of gamma/delta T cells augments cellular proliferation. Immunology 88:116–123PubMedCrossRefGoogle Scholar
  22. Hata S, Satyanarayana K, Devlin P, Band H, McLean J, Strominger JL, Brenner MB, Krangel MS (1988) Extensive junctional diversity of rearranged human T cell receptor delta genes. Science 240:1541–1544PubMedGoogle Scholar
  23. Havran WL, Grell S, Duwe G, Kimura J, Wilson A, Kruisbeek AM, O'brien RL, Born W, Tigelaar RE, Allison JP (1989) Limited diversity of T-cell receptor γ-chain expression of murine Thy-1+ dendritic epidermal cells revealed by Vγ3-specific monoclonal antibody. Proc Natl Acad Sci U S A 86:4185–4189PubMedCrossRefGoogle Scholar
  24. Havran WL, Chien YH, Allison JP (1991) Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252:1430–1432PubMedGoogle Scholar
  25. Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026PubMedCrossRefGoogle Scholar
  26. Hedges JF, Cockrell D, Jackiw L, Meissner N, Jutila MA (2003) Differential mRNA expression in circulating gammadelta T lymphocyte subsets defines unique tissue-specific functions. J Leukoc Biol 73:306–314PubMedCrossRefGoogle Scholar
  27. Hein WR, Dudler L (1993) Divergent evolution of T cell repertoires: extensive diversity and developmentally regulated expression of the sheep γδ T cell receptor. EMBO J 12:715–24PubMedGoogle Scholar
  28. Hein WR, Dudler L (1997) TCR γδ+ cells are prominent in normal bovine skin and express a diverse repertoire of antigen receptors. Immunology 91:58–64PubMedCrossRefGoogle Scholar
  29. Herzig C, Blumerman S, Lefranc MP, Baldwin C (2006a) Bovine T cell receptor gamma variable and constant genes: combinatorial usage by circulating γδ T cells. Immunogenetics 58(2-3):138–151PubMedCrossRefGoogle Scholar
  30. Herzig CTA, Blumerman SL, Baldwin CL (2006b) Identification of three new bovine T cell receptor delta variable gene subgroups expressed by peripheral blood T cells. Immunogenetics (in press)Google Scholar
  31. Ishiguro N, Aida Y, Shinagawa T, Shinagawa M (1993) Molecular structures of cattle T-cell receptor γ and δ chains predominantly expressed on peripheral blood lymphocytes. Immunogenetics 38:437–443PubMedCrossRefGoogle Scholar
  32. Kennedy HE, Welsh MD, Bryson DG, Cassidy JP, Forster FI, Howard CJ, Collins RA, Pollock JM (2002) Modulation of immune responses to Mycobacterium bovis in cattle depleted of WC1(+) gamma delta T cells. Infect Immun 70:1488–1500PubMedCrossRefGoogle Scholar
  33. Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC (2005) The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates γδ T cell clones that express unique T cell receptors. J Leukoc Biol 77:199–208PubMedCrossRefGoogle Scholar
  34. Leiden JM (1993) Transcriptional regulation of T cell receptor genes. Annu Rev Immunol 11:539–570PubMedCrossRefGoogle Scholar
  35. Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM (1989) Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243:217–220PubMedGoogle Scholar
  36. MacHugh ND, Mburu JK, Carol MJ, Wyatt CR, Orden JA, Davis WC (1997) Identification of two distinct subsets of bovine γδ T cells with unique cell surface phenotype and tissue distribution. Immunology 92:340–345PubMedCrossRefGoogle Scholar
  37. Mak TW, Ferrick DA (1998) The gammadelta T-cell bridge: linking innate and acquired immunity. Nat Med 4:764–765PubMedCrossRefGoogle Scholar
  38. McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR (1998) The generation of human gammadelta T cell repertoires during fetal development. J Immunol 160:5851–5860PubMedGoogle Scholar
  39. Meissner N, Radke J, Hedges JF, White M, Behnke M, Bertolino S, Abrahamsen M, Jutila MA (2003) Serial analysis of gene expression in circulating gamma delta T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles. J Immunol 170:356–364PubMedGoogle Scholar
  40. Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T, Takeuchi O, Akira S, Nimura Y, Yoshikai Y (2000) Expression of toll-like receptor 2 on gamma delta T cells bearing invariant V gamma 6/V delta 1 induced by Escherichia coli infection in mice. J Immunol 165:931–940PubMedGoogle Scholar
  41. Naiman BM, Alt D, Bolin CA, Zuerner R, Baldwin CL (2001) Protective killed Leptospira borgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and γδ T lymphocytes. Infect Immun 69:7550–7558PubMedCrossRefGoogle Scholar
  42. Naiman BM, Blumerman S, Alt D, Bolin CA, Brown R, Zuerner R, Baldwin CL (2002) Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun 70:6147–6157PubMedCrossRefGoogle Scholar
  43. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573PubMedCrossRefGoogle Scholar
  44. Ortaldo JR, Young HA (2005) Mouse Ly49 NK receptors: balancing activation and inhibition. Mol Immunol 42:445–450Google Scholar
  45. Pennington DJ, Vermijlen D, Wise EL, Clarke SL, Tigelaar RE, Hayday AC (2005) The integration of conventional and unconventional T cells that characterizes cell-mediated responses. Adv Immunol 87:27–59PubMedGoogle Scholar
  46. Rhodes SG, Hewinson RG, Vordermeier HM (2001) Antigen recognition and immunomodulation by gamma delta T cells in bovine tuberculosis. J Immunol 166:5604–5610PubMedGoogle Scholar
  47. Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL (2005) γδ T cell function varies with the expressed WC1 coreceptor. J Immunol 174:3386–3393PubMedGoogle Scholar
  48. Sathiyaseelan T, Naiman B, Welte S, MacHugh N, Black SJ, Baldwin CL (2002) Immunological characterization of a γδ T-cell stimulatory ligand on autologous monocytes. Immunology 105:181–189PubMedCrossRefGoogle Scholar
  49. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:2255–2258PubMedCrossRefGoogle Scholar
  50. Shin S, El Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of γδ T cell receptors. Science 308:252–255PubMedCrossRefGoogle Scholar
  51. Singer PA, Balderas RS, Theofilopoulos AN (1990) Thymic selection defines multiple T cell receptor Vβ ‘repertoire phenotypes’ at the CD4/CD8 subset level. EMBO J 9:3641–3648PubMedGoogle Scholar
  52. Szabo SJ, Dighe AS, Gubler U, Murphy KM (1997) Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185:817–824PubMedCrossRefGoogle Scholar
  53. Takamatsu HH, Kirkham PA, Parkhouse RM (1997) A gamma delta T cell specific surface receptor (WC1) signaling G0/G1 cell cycle arrest. Eur J Immunol 27:105–110PubMedGoogle Scholar
  54. Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164–1165PubMedCrossRefGoogle Scholar
  55. Tuo W, Bazer FW, Davis WC, Zhu D, Brown WC (1999) Differential effects of type I IFNs on the growth of WC1 CD8+ γδ T cells and WC1+ CD8 δγ T cells in vitro. J Immunol 162:245–253PubMedGoogle Scholar
  56. Walker ID, Glew MD, O’Keeffe MA, Metcalfe SA, Clevers HC, Wijngaard PL, Adams TE, Hein WR (1994) A novel multi-gene family of sheep gamma delta T cells. Immunology 83:517–523PubMedGoogle Scholar
  57. Welsh MD, Kennedy HE, Smyth AJ, Girvin RM, Andersen P, Pollock JM (2002) Responses of bovine WC1+ γδ T cells to protein and nonprotein antigens of Mycobacterium bovis. Infect Immun 70:6114–6120PubMedCrossRefGoogle Scholar
  58. Wijngaard PL, MacHugh ND, Metzelaar MJ, Romberg S, Bensaid A, Pepin L, Davis WC, Clevers HC (1994) Members of the novel WC1 gene family are differentially expressed on subsets of bovine CD4–CD8- γδ T lymphocytes. J Immunol 152:3476–3482PubMedGoogle Scholar
  59. Wijngaard PL, Metzelaar MJ, MacHugh ND, Morrison WI, Clevers HC (1992) Molecular characterization of the WC1 antigen expressed specifically on bovine CD4–CD8-gamma delta T lymphocytes. J Immunol 149:3273–3277PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Seth L. Blumerman
    • 1
    • 3
  • Carolyn T. A. Herzig
    • 1
  • Aric N. Rogers
    • 2
    • 4
  • Janice C. Telfer
    • 1
    • 2
  • Cynthia L. Baldwin
    • 1
    • 2
    • 5
  1. 1.Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstUSA
  2. 2.Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstUSA
  3. 3.Trudeau InstituteSaranac LakeUSA
  4. 4.Buck InstituteNovatoUSA
  5. 5.Paige LaboratoryUniversity of MassachusettsAmherstUSA

Personalised recommendations