, Volume 58, Issue 2–3, pp 113–121 | Cite as

Gender-specific associations between MICA-STR and nasopharyngeal carcinoma in a southern Chinese Han population

  • Wei Tian
  • Xiao-min Zeng
  • Li-xin Li
  • He-kun Jin
  • Qi-zhi Luo
  • Fan Wang
  • Shi-shi Guo
  • Ya Cao
Original Paper


Previous studies have identified several HLA-B specificities that are associated with nasopharyngeal carcinoma (NPC) in populations of Chinese descent, in particular HLA-B35, -B38, -B46, and -B58. Perhaps except for HLA-B46, other associations cannot be simply accounted for by the linkage disequilibrium between HLA-A and B loci. The human major histocompatibility complex (MHC) class I chain-related gene A (MICA) maps 46 kb centromeric to HLA-B and is highly polymorphic; it encodes a stress-inducible protein which functions as a ligand for the NKG2D/DAP10 complex to activate natural killer (NK) cells, γδ T cells, and CD8+ T cells. We postulated MICA gene as a susceptibility factor for nasopharyngeal carcinoma, an Epstein–Barr virus-associated malignancy. In this study, 218 unrelated patients newly diagnosed with NPC and 196 randomly selected healthy controls from southern China mainland were analyzed for the short tandem repeat polymorphism of exon 5 of MICA gene (MICA-STR) and MICA gene deletion, using fluorescent polymerase chain reaction-gene scanning (PCR/size-sequencing) and polymerase chain reaction-sequence-specific priming (PCR/SSP) technology. MICA*A9 was present at significantly increased frequency in the patient group (PC=0.0001002, OR=2.528, 95% CI=1.636–3.907), whereas the frequency of MICA*A5.1 was significantly decreased (PC=0.006, OR=0.594, 95% CI=0.437–0.806). Gender-based stratification revealed a significant increase of MICA*A9 frequency (PC=0.000072, OR=3.255, 95% CI=1.855–5.709) and a significant decrease of MICA*A5.1 frequency (PC=0.000737, OR=0.486, 95% CI=0.337–0.702) in male patients with NPC (N=166), compared with male normal controls (N=120). A significant interaction between MICA*A9 and gender was observed (\({\text{X}}_{{W^{2} }} \)=41.58, P=0.0001). Statistics also revealed heterogeneity of effects among MICA*A5.1/MICA*A9-bearing phenotypes and a dose-dependent effect of MICA*A5.1 and MICA*A9 on NPC risk in male subgroup. This constitutes the first demonstration of a gender-specific association between MICA-STR polymorphism and NPC, which could largely be attributable to the underlying gender-related mechanisms that modulate MICA gene expression. The results provide strong supporting evidence suggesting that MICA*A9 may be a genetic risk factor for NPC in male individuals in this population. The potential interaction between MICA and other non-HLA host factors and environmental exposures remains to be further studied.


Nasopharyngeal carcinoma Human leukocyte antigen MHC class-i chain-related gene A Microsatellite DNA Gender 


  1. Ando H, Mizuki N, Ota M, Yamazaki M, Ohno S, Goto K, Miyata Y, Wakisaka K, Bahram S, Inoko H (1997) Allelic variants of the human MHC class I chain-related B gene (MICB). Immunogenetics 46:499–508CrossRefPubMedGoogle Scholar
  2. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259–6263PubMedADSGoogle Scholar
  3. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729CrossRefPubMedGoogle Scholar
  4. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36:431–432CrossRefPubMedGoogle Scholar
  5. Chan SH, Day NE, Kunaratnam N, Chia KB, Simons MJ (1983) HLA and nasopharyngeal carcinoma in Chinese—a further study. Int J Cancer 32:171–176PubMedGoogle Scholar
  6. Chan SH, Chew CT, Prasad U, Wee GB, Srinivasan N, Kunaratnam N (1985) HLA and nasopharyngeal carcinoma in Malays. Br J Cancer 51:389–392PubMedGoogle Scholar
  7. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, Yang CS (2001) Serologic markers of Epstein–Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345:1877–1882CrossRefPubMedGoogle Scholar
  8. Colhoun HM, McKeigue PM, Davey Smith G (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361:865–872CrossRefPubMedGoogle Scholar
  9. Collins RW, Stephens HA, Clare MA, Vaughan RW (2002) High resolution molecular phototyping of MICA and MICB alleles using sequence specific primers. Hum Immunol 63:783–794CrossRefPubMedGoogle Scholar
  10. Dardari R, Khyatti M, Jouhadi H, Benider A, Ettayebi H, Kahlain A, Mansouri A, El Gueddari B, Benslimane A (2001) Study of human leukocyte antigen class I phenotypes in Moroccan patients with nasopharyngeal carcinoma. Int J Cancer 92:294–297CrossRefPubMedGoogle Scholar
  11. Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-Estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25:2957–2968PubMedGoogle Scholar
  12. Gonzalez S, Rodriguez-Rodero S, Martinez-Borra J, Lopez-Vazquez A, Rodrigo L, Lopez-Larrea C (2003) MICB typing by PCR amplification with sequence specific primers. Immunogenetics 54:850–855PubMedGoogle Scholar
  13. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884CrossRefPubMedADSGoogle Scholar
  14. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8 alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260CrossRefPubMedGoogle Scholar
  15. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedMATHGoogle Scholar
  16. Hildesheim A, Apple RJ, Chen CJ, Wang SS, Cheng YJ, Klitz W, Mack SJ, Chen IH, Hsu MM, Yang CS, Brinton LA, Levine PH, Erlich HA. (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94:1780–1789PubMedGoogle Scholar
  17. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899CrossRefPubMedGoogle Scholar
  18. Hsu SM, Chen YC, Jiang MC (2000) 17 beta-estradiol inhibits tumor necrosis factor-alpha-induced nuclear factor-kappa B activation by increasing nuclear factor-kappa B p105 level in MCF-7 breast cancer cells. Biochem Biophys Res Commun 279:47–52CrossRefPubMedGoogle Scholar
  19. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52CrossRefPubMedGoogle Scholar
  20. Khanna R, Busson P, Burrows SR, Raffoux C, Moss DJ, Nicholls JM, Cooper L (1998) Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein–Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res 58:310–314PubMedGoogle Scholar
  21. Kimura A, Sasazuki T (1992) Eleventh international histocompatibility workshop reference protocol for the HLA DNA typing technique. In: Tsuji K, Aizawa M, Sasazuki T (eds) HLA 1991, vol 1. Oxford Univ. Press, New York, pp 397–419Google Scholar
  22. Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Kashiwase K, Moriyama S, Tsuchiya N, Ando H, Shiina T, Geraghty DE, Inoko H, Juji T (1999) MIC-A polymorphism in Japanese and a MIC-A–MIC-B null haplotype. Immunogenetics 49:620–628CrossRefPubMedGoogle Scholar
  23. Lee SP, Chan AT, Cheung ST, Thomas WA, CroomCarter D, Dawson CW, Tsai CH, Leung SF, Johnson PJ, Huang DP (2000) CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol 165:573–582PubMedGoogle Scholar
  24. Li HM, Zhuang ZH, Wang Q, Pang JC, Wang XH, Wong HL, Feng HC, Jin DY, Ling MT, Wong YC, Eliopoulos AG, Young LS, Huang DP, Tsao SW (2004) Epstein–Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells. Oncogene 23:4488–4494CrossRefPubMedGoogle Scholar
  25. Lo SS, Lee YJ, Wu CW, Liu CJ, Huang JW, Lui WY (2004) The increase of MICA gene A9 allele associated with gastric cancer and less schirrous change. Br J Cancer 90:1809–1813PubMedGoogle Scholar
  26. Lu CC, Chen JC, Jin YT, Yang HB, Chan SH, Tsai ST (2003) Genetic susceptibility to nasopharyngeal carcinoma within the HLA-A locus in Taiwanese. Int J Cancer 103:745–751CrossRefPubMedGoogle Scholar
  27. Luftig M, Prinarakis E, Yasui T, Tsichritzis T, Cahir-McFarland E, Inoue J, Nakano H, Mak TW, Yeh WC, Li X, Akira S, Suzuki N, Suzuki S, Mosialos G, Kieff E (2003) Epstein–Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci U S A 100:15595–15600CrossRefPubMedADSGoogle Scholar
  28. Lu SJ, Day NE, Degos L, Lepage V, Wang PC, Chan SH, Simons M, McKnight B, Easton D, Zeng Y, De-The G (1990) Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346:470–471CrossRefPubMedADSGoogle Scholar
  29. Manly KF (2005) Reliability of statistical associations between genes and disease. Immunogenetics 57:549–558CrossRefPubMedGoogle Scholar
  30. Mendoza-Rincon M, Arguello J, Perez-Rodriguez P, McWhinnie A, Marsh SGE, Fischer G, Madrigal J (1999) Characterization of the MICA polymorphism by sequence specific oligonucleotide probing. Immunogenetics 49:471–478CrossRefPubMedGoogle Scholar
  31. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S, and Inoko H (1997) Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A 94:1298–1303PubMedADSGoogle Scholar
  32. Molinero LL, Fuertes MB, Girart MV, Fainboim L, Rabinovich GA, Costas MA, Zwirner NW (2004) NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J Immunol 173:5583–5590PubMedGoogle Scholar
  33. Niedobitek G (2000) Epstein–Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Mol Pathol 53:248–254CrossRefPubMedGoogle Scholar
  34. Ooi EE, Ren EC, Chan SH (1997) Association between microsatellites within the human MHC and nasopharyngeal carcinoma. Int J Cancer 74:229–232CrossRefPubMedGoogle Scholar
  35. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937CrossRefPubMedGoogle Scholar
  36. Parkin DM, Laara E, Muir CS (1988) Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer 41:184–197PubMedGoogle Scholar
  37. Petersdorf EW, Shuler KB, Longton GM, Spies T, Hansen JA (1999) Population study of allelic diversity in the human MHC class I-related MIC-A gene. Immunogenetics 49:605–612CrossRefPubMedGoogle Scholar
  38. Ripple MO, Henry WF, Schwarze SR, Wilding G, Weindruch R (1999) Effect of antioxidants on androgen-induced AP-1 and NF-kappaB DNA-binding activity in prostate carcinoma cells. J Natl Cancer Inst 91:1227–1232CrossRefPubMedGoogle Scholar
  39. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287CrossRefPubMedGoogle Scholar
  40. Tian W, Boggs DA, Ding WZ, Chen DF, Fraser PA (2001) MICA genetic polymorphism and linkage disequilibrium with HLA-B in 29 African-American families. Immunogenetics 53:724–728CrossRefPubMedGoogle Scholar
  41. Vaughan TL, Shapiro JA, Burt RD, Swanson GM, Berwick M, Lynch CF, Lyon JL (1996) Nasopharyngeal cancer in a low-risk population: defining risk factors by histological type. Cancer Epidemiol Biomarkers Prev 5:587–593PubMedGoogle Scholar
  42. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442PubMedCrossRefGoogle Scholar
  43. Ward MH, Pan WH, Cheng YJ, Li FH, Brinton LA, Chen CJ, Hsu MM, Chen IH, Levine PH, Yang CS, Hildesheim A. (2000) Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. Int J Cancer 86:603–609CrossRefPubMedGoogle Scholar
  44. Wu SB, Hwang SJ, Chang AS, Hsieh T, Hsu MM, Hsieh RP, Chen CJ (1989) Human leukocyte antigen (HLA) frequency among patients with nasopharyngeal carcinoma in Taiwan. Anticancer Res 9:1649–1653PubMedGoogle Scholar
  45. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732CrossRefPubMedGoogle Scholar
  46. Yang XR, Diehl S, Pfeiffer R, Chen CJ, Hsu WL, Dosemeci M, Cheng YJ, Sun B, Goldstein AM, Hildesheim A, Chinese and American Genetic Epidemiology of NPC Study Team (2005) Evaluation of risk factors for nasopharyngeal carcinoma in high-risk nasopharyngeal carcinoma families in Taiwan. Cancer Epidemiol Biomarkers Prev 14:900–905CrossRefPubMedGoogle Scholar
  47. Yu MC, Yuan JM (2002) Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12:421–429CrossRefPubMedMATHGoogle Scholar
  48. Yuan JM, Wang XL, Xiang YB, Gao YT, Ross RK, Yu MC (2000a) Preserved foods in relation to risk of nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 85:358–363CrossRefPubMedGoogle Scholar
  49. Yuan JM, Wang XL, Xiang YB, Gao YT, Ross RK, Yu MC (2000b) Non-dietary risk factors for nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 85:364–369CrossRefPubMedGoogle Scholar
  50. Zhu XN, Chen R, Kong FH, Liu W (1990) Human leukocyte antigens-A, -B, -C, and -DR and nasopharyngeal carcinoma in northern China. Ann Otol Rhinol Laryngol 99:286–287PubMedGoogle Scholar
  51. Zou Y, Bresnahan W, Taylor RT, Stastny P (2005) Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol 174:3098–3104PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wei Tian
    • 1
    • 2
  • Xiao-min Zeng
    • 3
  • Li-xin Li
    • 1
  • He-kun Jin
    • 4
  • Qi-zhi Luo
    • 1
  • Fan Wang
    • 1
  • Shi-shi Guo
    • 1
  • Ya Cao
    • 2
  1. 1.Department of Immunology, Xiang-Ya School of MedicineCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Cancer Research Institute, Xiang-Ya School of MedicineCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Department of Epidemiology and Statistics, Xiang-Ya School of Public HealthCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Department of RadiotherapyOncology Hospital of Hunan ProvinceChangshaPeople’s Republic of China

Personalised recommendations