Immunogenetics

, Volume 57, Issue 3–4, pp 254–266

Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes

  • R. Antonacci
  • C. Lanave
  • L. Del Faro
  • G. Vaccarelli
  • S. Ciccarese
  • S. Massari
Original Paper

Abstract

Molecular cloning of cDNA from γ/δ T cells has shown that in sheep, the variable domain of the δ chain is chiefly determined by the expression of the TRDV1 subgroup, apparently composed of a large number of genes. There are three other TRDV subgroups, but these include only one gene each. To evaluate the extent and the complexity of the genomic TRDV repertoire, we screened a sheep liver genomic library from a single individual of the Altamurana breed and sheep fibroblast genomic DNA from a single individual of the Gentile di Puglia breed. We identified a total of 22 TRDV1 genes and the TRDV4 gene. A sequence comparison between germline and the rearranged genes indicates that, in sheep, the TRDV repertoire is generated by the VDJ rearrangement of at least 40 distinct TRDV1 genes. All germline TRDV1 genes present a high degree of similarity in their coding as well as in 5′ and 3′ flanking regions. However, a systematic analysis of the translation products reveals that these genes present a broadly different and specific repertoire in the complementarity-determining regions or recognition loops, allowing us to organize the TRDV genes into sets. We assume that selection processes operating at the level of ligand recognition have shaped the sheep TRDV germline repertoire. A phylogenetic study based on a sequence analysis of the TRDV genes from different mammalian species shows that the diversification level of these genes is higher in artiodactyl species compared to humans and mice.

Keywords

T-cell receptor TRDV genes Sheep Evolution Artiodactyl 

References

  1. Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN (2001) Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824Google Scholar
  2. Binns RM, Duncan IA, Powis SJ, Hutchings A, Butcher GW (1992) T lymphocytes in the blood of young pigs identified by specific monoclonal antibodies. Immunology 77:219–227Google Scholar
  3. Bosc N, Lefranc, MP (2003) The mouse (Mus musculus) T cell receptor alpha (TRA) and delta (TRD) variable genes. Dev Comp Immunol 27:465–497Google Scholar
  4. Cooper MD, Chen CLH, Bucy RP, Thompson CB (1991) Avian T cell ontogeny. Adv Immunol 50:87–117Google Scholar
  5. Feeney AJ, Tang A, Ogwaro KM (2000) B-cell repertoire formation: role of the recombination signal sequence in non-random V segment utilization. Immunol Rev 175:59–69Google Scholar
  6. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12 543–548PubMedGoogle Scholar
  7. Hein WR, Dudler L (1993) Divergent evolution of T cell repertoires: extensive diversity and developmentally regulated expression of the sheep γδ T cell receptor. EMBO J 12:715–724Google Scholar
  8. Hein WR, Dudler L (1997) TCR γδ+ cells are prominent in normal bovine skin and express a diverse repertoire of antigen receptors. Immunology 91:58–64Google Scholar
  9. Hein WR, MacKay CR (1991) Prominence of γδ T cell in the ruminant immune system. Immunol Today 12:30–34Google Scholar
  10. Hess JE, Lieber MR, Mizuuchi K, Gellert M (1989) V(D)J recombination: a functional definition of the joining signals. Genes Dev 3:1053–1061PubMedGoogle Scholar
  11. Ishiguro N, Aida Y, Shinagawa T, Shinagawa M (1993) Molecular structures of cattle T-cell receptor gamma and delta chains predominantly expressed on peripheral blood lymphocytes. Immunogenetics 38:437–443Google Scholar
  12. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  13. Kubota T, Wang J, Gobel TW, Hockett RD, Cooper MD, Chen CLH (1999) Characterization of an avian (Gallus gallus domesticus) TCR alpha delta gene locus. J Immunol 163:3858–3866Google Scholar
  14. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245CrossRefPubMedGoogle Scholar
  15. Lefranc MP (2003) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 31:307–312CrossRefPubMedGoogle Scholar
  16. Lefranc M-P, Lefranc G (2001) The T cell receptor facts book. Academic, London, pp 389Google Scholar
  17. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77Google Scholar
  18. Li H, Lebedeva MI, Llera AS, Fields BA, Brenner MB, Mariuzza, RA (1998) Structure of the Vδ domain of a human γδ T-cell antigen receptor. Nature 391:502–506Google Scholar
  19. Massari S, Antonacci R, Lanave C, Ciccarese S (2000) Genomic organization of sheep TRDJ segments and their expression in the δ-chain repertoire in thymus. Immunogenetics 52:1–8Google Scholar
  20. Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. Emb News 4:14Google Scholar
  21. Pommié C, Levadoux S, Sabatier R, Lefranc G, Lefranc M-P (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J Mol Recog 17:17–32Google Scholar
  22. Saccone C, Lanave C, Pesole G, and Preparata G (1990) Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol 183:570–583Google Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  24. Scaviner D, Lefranc MP (2000) The human T cell receptor alpha variable (TRAV) genes. Exp Clin Immunogenet 17:83–96CrossRefPubMedGoogle Scholar
  25. Swofford D (1998) PAUP*: phylogetic analysis using parsimony (* and other methods). Sinauer, SunderlandGoogle Scholar
  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  27. Yang YG, Ohta S, Yamada S, Shimizu M, Takagaki Y (1995) Diversity of T cell receptor δ-chain in the thymus of a one-month-old pig. J Immunol 155:1981–1993Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. Antonacci
    • 1
  • C. Lanave
    • 2
  • L. Del Faro
    • 1
  • G. Vaccarelli
    • 1
  • S. Ciccarese
    • 1
  • S. Massari
    • 3
  1. 1.Dipartimento di Anatomia Patologica e di GeneticaUniversity of BariBariItaly
  2. 2.Istituto di Tecnologie Biomediche Sezione di BariCNRMilanItaly
  3. 3.Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversity of LecceLecceItaly

Personalised recommendations