, Volume 55, Issue 12, pp 855–865 | Cite as

Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus)

  • Camille BonneaudEmail author
  • Gabriele Sorci
  • Véronique Morin
  • Helena Westerdahl
  • Rima Zoorob
  • Håkan Wittzell
Original Paper


In order to understand the expression and evolution of host resistance to pathogens, we need to examine the links between genetic variability at the major histocompatibility complex (Mhc), phenotypic expression of the immune response and parasite resistance in natural populations. To do so, we characterized the Mhc class I and IIB genes of house sparrows with the goal of designing a PCR-based genotyping method for the Mhc genes using denaturing gradient gel electrophoresis (DGGE). The incredible success of house sparrows in colonizing habitats worldwide allows us to assess the importance of the variability of Mhc genes in the face of various pathogenic pressures. Isolation and sequencing of Mhc class I and IIB alleles revealed that house sparrows have fewer loci and fewer alleles than great reed warblers. In addition, the Mhc class I genes divided in two distinct lineages with different levels of polymorphism, possibly indicating different functional roles for each gene family. This organization is reminiscent of the chicken B complex and Rfp-Y system. The house sparrow Mhc hence appears to be intermediate between the great reed warbler and the chicken Mhc, both in terms of numbers of alleles and existence of within-class lineages. We specifically amplified one Mhc class I gene family and ran the PCR products on DGGE gels. The individuals screened displayed between one and ten DGGE bands, indicating that this method can be used in future studies to explore the ecological impacts of Mhc diversity.


Major histocompatibility complex House sparrow Lineage-specific genotyping method Denaturing gradient gel electrophoresis Restriction-fragment length polymorphism 



We thank D. Richardson, T. von Schantz and F. Depaulis for discussion and advice, J. Ewen for useful comments and R. Barbault (director of the Ecole Doctorale Diversité du Vivant) for financial help. This research was supported by grants from the CNRS to G.S. and R.Z. (ACI Jeunes Chercheurs to G.S. and the GDR 2155 ‘Ecologie Comportementale’ to G.S., O.C. and B.F.) and from the European Commission to R.Z. (KA5 RLRT-CT99-1591).


  1. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224PubMedGoogle Scholar
  2. Briles WE, Stone HA, Cole RK (1977) Marek’s disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195:193–195PubMedGoogle Scholar
  3. Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461CrossRefGoogle Scholar
  4. Edwards SV Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian MHC genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci USA 92:12200–12204PubMedGoogle Scholar
  5. Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250PubMedGoogle Scholar
  6. Guillemot F, Billault A, Pourquié O, Béhar G, Chaussé A-M, Zoorob R, Kreibich G, Auffray C (1988) A molecular map of the chicken major histocompatibility complex: the class IIβ genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7:2775–2785PubMedGoogle Scholar
  7. Gu X, Nei M (1999) Locus specificity of polymorphic alleles and evolution by a birth-and-death process in mammalian MHC genes. Mol Biol Evol 16:147–156PubMedGoogle Scholar
  8. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  9. Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600PubMedGoogle Scholar
  10. Hughes AL, Nei M (1988) Patterns of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170PubMedGoogle Scholar
  11. Hughes AL, Nei M (1989) Nucleotide substitution at the major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962PubMedGoogle Scholar
  12. Jacob JP, Milne S, Beck S, Kaufman J (2000) The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics 51:138–147PubMedGoogle Scholar
  13. Janeway CA, Travers P, Walport M, Capra JD (1999) Immunobiology: the immune system in health and disease. Current Biology Publications, LondonGoogle Scholar
  14. Juul-Madsen HR, Dalgaard TS, Afanassieff M (2000) Molecular characterization of major and minor MHC class I and II genes in B21-like haplotypes in chickens. Anim Genet 31:252–261CrossRefPubMedGoogle Scholar
  15. Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates. Immunogenetics 50:228–236PubMedGoogle Scholar
  16. Kaufman J, Völk H, Wallny H (1995) A “minimal essential MHC” and an “unrecognized MHC”: two extremes in selection for polymorphism. Immunol Rev 143:63–88PubMedGoogle Scholar
  17. Klein J, Satta Y, O’hUigin C, Takahata N (1993) The molecular descent of the major histocompatibity complex. Annu Rev Immunol 11:269–295PubMedGoogle Scholar
  18. Kroemer G, Bernot A, Béhar G, Chaussé A, Gastinel L, Guillemot F, Park I, Thoraval P, Zoorob R, Auffray C (1990) Molecular genetics of the chicken MHC: current status and evolutionary aspects. Immunol Rev 113:119–145PubMedGoogle Scholar
  19. Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, Penn.Google Scholar
  20. Miller MM, Goto R, Bernot A, Zoorob R, Auffray C, Bumstead N, Briles WE (1994) Two MHC class I and two MHC class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci USA 91:4397–4401PubMedGoogle Scholar
  21. Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturant gradient gel electrophoresis. Methods Enzymol 155:501–527PubMedGoogle Scholar
  22. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  23. Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) Proceedings of the 11th histocompatibility workshop and conference, vol 2. Oxford University Press, Oxford, pp 27–38Google Scholar
  24. Nei M, Gu X, Sitinikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806PubMedGoogle Scholar
  25. Ober C (1992) The maternal-fetal relationship in human pregnancy: an immunological perspective. Exp Clin Immunogenet 9:1–14PubMedGoogle Scholar
  26. O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434PubMedGoogle Scholar
  27. Parham P, Lomen CE, Lawlor DA, et al (1988) Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci USA 85:4005–4009PubMedGoogle Scholar
  28. Potts WK, Wakeland EK (1990) Evolution of diversity at the major histocompatibility complex. Trends Evol Ecol 5:181–187CrossRefGoogle Scholar
  29. Potts WK, Wakeland EK (1993) Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet 9:408–412CrossRefPubMedGoogle Scholar
  30. Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302CrossRefPubMedGoogle Scholar
  31. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529CrossRefPubMedGoogle Scholar
  32. Rozas J, Rozas R (1999) DnaSP version 3: an intergrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  33. Sanjayan MA, Crooks K, Zegers G, Foran D (1996) Genetic variation and the immune response in natural populations of pocket gophers. Cons Biol 10:1519–1527CrossRefGoogle Scholar
  34. Sato A, Figueroa, F, Mayer WE, Grant PR, Grant R, Klein J (2000) MHC class II genes of Darwin’s finches: divergence by point mutations and reciprocal recombination. In: Kasahara M (ed) Major histocompatibility complex: evolution, structure, and function. Springer, Tokyo Berlin Heidelberg, pp 518–541Google Scholar
  35. Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J (2001) Evolution of Mhc class II B genes in Darwin’s finches and their closest relatives: birth of a new gene. Immunogenetics 53:792–801PubMedGoogle Scholar
  36. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of a single-base changes. Proc Natl Acad Sci USA 86:232–236PubMedGoogle Scholar
  37. Singh PB, Brown RE, Roser B (1987). MHC antigens in urine as olfactory recognition cues. Nature 327:161–164PubMedGoogle Scholar
  38. Summers-Smith JD (1988) The sparrows, a study of the genus Passer. Poyser, Calton, pp 114–161Google Scholar
  39. Takahata N, Satta Y, Klein J (1992) Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130:925–938PubMedGoogle Scholar
  40. Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170PubMedGoogle Scholar
  41. Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence for a minimal essential Mhc. Immunogenetics 52:92–100PubMedGoogle Scholar
  42. Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC class II B loci in pheasants and domestic chicken. Mol Biol Evol 16:479–490PubMedGoogle Scholar
  43. Yamazaki K, Beauchamp GK, Kupniewski J, Bard J, Thomas L, Boyse EA (1988). Familial imprinting determines H-2 selective mating preferences. Science 240:1331–1332PubMedGoogle Scholar
  44. Zelano B, Edwards SV (2002). An Mhc component to kin recognition and mate choice in birds: predictions, progress and prospects. Am Nat 160:S225–S237CrossRefGoogle Scholar
  45. Ziegler A, Gottfried D, Uchanska-Ziegler B (2002) Possible role for products of polymorphic MHC and linked olfactory receptor genes during selection processes in reproduction. Am J Rep Immunol 47:1–9CrossRefGoogle Scholar
  46. Zoorob R, Bernot A, Renoir DM, Choukri F, Auffray C (1993) Chicken major histocompatibility complex class II B genes: analysis of interallelic and interlocus sequence variance. Eur J Immunol 23:1139–1145PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Camille Bonneaud
    • 1
    Email author
  • Gabriele Sorci
    • 1
  • Véronique Morin
    • 2
  • Helena Westerdahl
    • 3
  • Rima Zoorob
    • 2
  • Håkan Wittzell
    • 2
    • 4
  1. 1.Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7103Université Pierre et Marie Curie Paris France
  2. 2.Laboratoire de Génétique Moléculaire et Biologie du DéveloppementCentre National de la Recherche Scientifique ERS 1984 VillejuifFrance
  3. 3.Molecular Population Biology Laboratory, Department of Animal EcologyUniversity of Lund LundSweden
  4. 4.Botanical MuseumLund UniversityLundSweden

Personalised recommendations