Advertisement

Immunogenetics

, Volume 55, Issue 10, pp 695–705 | Cite as

Nucleotide sequencing analysis of the swine 433-kb genomic segment located between the non-classical and classical SLA class I gene clusters

  • Atsuko Shigenari
  • Asako Ando
  • Christine Renard
  • Patrick Chardon
  • Takashi Shiina
  • Jerzy K. Kulski
  • Hiroshi Yasue
  • Hidetoshi Inoko
Original Paper

Abstract

Genome analysis of the swine leukocyte antigen (SLA) region is needed to obtain information on the MHC genomic sequence similarities and differences between the swine and human, given the possible use of swine organs for xenotransplantation. Here, the genomic sequences of a 433-kb segment located between the non-classical and classical SLA class I gene clusters were determined and analyzed for gene organization and contents of repetitive sequences. The genomic organization and diversity of this swine non-class I gene region was compared with the orthologous region of the human leukocyte antigen (HLA) complex. The length of the fully sequenced SLA genomic segment was 433 kb compared with 595 kb in the corresponding HLA class I region. This 162-kb difference in size between the swine and human genomic segments can be explained by indel activity, and the greater variety and density of repetitive sequences within the human MHC. Twenty-one swine genes with strong sequence similarity to the corresponding human genes were identified, with the gene order from the centromere to telomere of HCR - SPR1 - SEEK1 - CDSN - STG - DPCR1 - KIAA1885 - TFIIH - DDR - IER3 - FLOT1 - TUBB - KIAA0170 - NRM - KIAA1949 - DDX16 - FLJ13158 - MRPS18B - FB19 - ABCFI - CAT56. The human SEEK1 and DPCR1 genes are pseudogenes in swine. We conclude that the swine non-class I gene region that we have sequenced is highly conserved and therefore homologous to the corresponding region located between the HLA-C and HLA-E genes in the human.

Keywords

MHC class I region Swine genome Indel Non-class I genes Repeat elements 

Notes

Acknowledgements

We would like to thank Dr. Yasunari Matsuzaka, Akihiro Denda, and Gen Tamiya, for helpful information regarding the human novel genes surrounding the CDSN gene. We also wish to thank Dr. Tetsushi Yamagata and Tatsuya Anzai for useful discussion. This study was supported by grants from the Ministry of Education, Sports, Science, Culture and Technology, Japan, and the Animal Genome Research Project of the Ministry of Agriculture, Forestry and Fisheries of Japan.

References

  1. Amadou C (1999) Evolution of the MHC class I region: the framework hypothesis. Immunogenetics 49:362–367CrossRefPubMedGoogle Scholar
  2. Anzai T, Shiina T, Kimura T, Yanagiya K, Kohara S, Shigenari A, Yamagata T, Kulski JK, Naruse TK, Fujimori Y, Fukuzumi Y, Yamazaki M, Tashiro H, Iwamoto C, Umehara Y, Imanishi T, Meyer A, Ikeo K, Gojobori T, Bahram S, Inoko H (2003) Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Nat Acad Sci USA 100:7708–7713CrossRefPubMedGoogle Scholar
  3. Bernardi G (1993) The isochore organization of the human genome and its evolutionary history-a review. Gene 135:57–66CrossRefPubMedGoogle Scholar
  4. Chardon P, Renard C, Vaiman M (1999) The major histocompatibility complex in swine. Immunol Rev 167:179–192PubMedGoogle Scholar
  5. Chardon P, Rogel-Gaillard C, Cattolico L, Duprat S, Vaiman M, and Renard C (2001) Sequence of the pig major histocompatibility region containing all non-classical class I genes. Tissue Antigens 57:55–65CrossRefPubMedGoogle Scholar
  6. Deininger PL (1983) Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem 129:216–223PubMedGoogle Scholar
  7. Günther E, Walter L (2001) The major histocompatibility complex of the rat (R. norvegicus). Immunogenetics 53:520–542PubMedGoogle Scholar
  8. Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mol Evol 32:105–121PubMedGoogle Scholar
  9. Keicho N, Ohashi J, Tamiya G, Nakata K, Taguchi Y, Azuma A, Ohishi N, Emi M, Park MH, Inoko H, Tokunaga K, Kudoh S (2000) Fine localization of a major disease-susceptibility locus for diffuse panbronchiolitis. Am J Hum Genet 66:501–507PubMedGoogle Scholar
  10. Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122CrossRefPubMedGoogle Scholar
  11. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1.3-galactosyltaransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092CrossRefPubMedGoogle Scholar
  12. Matsuzaka Y, Tounai K, Denda A, Tomizawa M, Makino S, Okamoto K, Keicho N, Oka A, Kulski JK, Tamiya G (2002) Identification of novel candidate genes in the diffuse panbronchiolitis critical region of the class I human MHC. Immunogenetics 54:301–309CrossRefPubMedGoogle Scholar
  13. Mizuki N, Ando H, Kimura M, Ohno S, Miyata S, Yamazaki M, Tashiro H, Watanabe K, Ono A, Taguchi S, Sugawara C, Fukuzumi Y, Okumura K, Goto K, Ishihara M, Nakamura S, Yonemoto J, Kikuti YY, Shiina T, Chen L, Ando A, Ikemura T, Inoko H (1997) Nucleotide sequence analysis of the HLA class I region spanning the 237-kb segment around the HLA-B and -C genes. Genomics 42:55–66PubMedGoogle Scholar
  14. Oka A, Tamiya G, Tomizawa M, Ota M, Katsuyama Y, Makino S, Shiina T, Yoshitome M, Iizuka M, Sasao Y, Iwashita K, Kawakubo Y, Sugai J, Ozawa A, Ohkido M, Kimura M, Bahram S, Inoko H (1999) Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. Hum Mol Gent 8:2165–2170CrossRefGoogle Scholar
  15. Oka A, Hayashi H, Tomizawa M, Okamoto K, Hui J, Kulski JK, Beilby J, Tamiya G, Inoko H (2003) Localization of a non-melanoma skin cancer susceptibility region within the major histocompatibility complex by association analysis using microsatellite markers. Tissue Antigens 61:203–210PubMedGoogle Scholar
  16. Peelman LJ, Chardon P, Vaiman M, Mattheeuws M, Van Zeveren A, Van de Weghe A, Bouquet Y, Campbell RD (1996) A detailed physical map of the porcine major histocompatibility complex (MHC) class III region: comparison with human and mouse MHC class III regions. Mamm Genome 7:363–367CrossRefPubMedGoogle Scholar
  17. Rabin M, Fries R, Singer DS, Ruddle FH (1985) Assignment of the porcine major histocompatibility complex to chromosome 7 by in situ hybridization. Cytogenet Cell Genet 39:206–209PubMedGoogle Scholar
  18. Renard C, Vaiman M, Chiannikulchai N, Cattolico L, Robert C, Chardon P (2001) Sequence of the pig major histocompatibility region containing the classical class I genes. Immunogenetics 53:490–500PubMedGoogle Scholar
  19. Rogel-Gaillard C, Bourgeaux N, Billault A, Vaiman M, Chardon P (1999) Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. Cytogenet Cell Genet 85:205–211CrossRefPubMedGoogle Scholar
  20. Rogic S, Mackworth AK, Ouellette FB (2001) Gene-finding programs on mammalian sequences. Genome Res 11:817–832Google Scholar
  21. Sachs DH (1994) The pig as a potential xenograft donor. Vet Immunol Immunopathol 43:185–191CrossRefPubMedGoogle Scholar
  22. Sambrook JG, Russell R, Umrania Y, Edwards YJ, Campbell RD, Elgar G, Clark MS (2002) Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics 54:367–380PubMedGoogle Scholar
  23. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker-A web server for aligning two genomic DNA sequences. Genome Res 10:577–586PubMedGoogle Scholar
  24. Shiina T, Tamiya G, Oka A, Yamagata T, Yamagata N, Kikkawa E, Goto K, Mizuki N, Watanabe K, Fukuzumi Y, Taguchi S, Sugawara C, Ono A, Chen L, Yamazaki M, Tashiro H, Ando A, Ikemura T, Kimura M, Inoko H (1998) Nucleotide sequencing analysis of the 146 kb segment around the IkBL and MICA genes at the centromeric end of the HLA class I region. Genomics 47:372–382PubMedGoogle Scholar
  25. Shiina T, Tamiya G, Oka A, Takishima N, Yamagata T, Kikkawa E, Iwata K, Tomizawa M, Okuaki N, Kuwano Y, Watanabe K, Fukuzumi Y, Itakura S, Sugawara C, Ono A, Yamazaki M, Tashiro H, Ando A, Ikemura T, Soeda E, Kimura M, Bahram S, Inoko H (1999) Molecular dynamics of MHC genesis unraveled by sequence of the 1,796,938-bp HLA class I region. Proc Natl Acad Sci USA 96:13282–13287CrossRefPubMedGoogle Scholar
  26. Shimamura M, Abe H, Nikaido M, Ohshima K, Okada M (1999) Genealogy of families of SINEs in Cetaceans and Artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Mol Biol Evol 16:1046–1060PubMedGoogle Scholar
  27. Smith TP, Rohrer GA, Alexander LJ, Troyer DL, Kirby-Dobbels KR, Janzen MA, Cornwell DL, Louis CF, Schook LB, Beattie CW (1995) Directed integration of the physical and genetic linkage maps of the swine chromosome 7 reveals that SLA spans the centromere. Genome Res 5:259–271PubMedGoogle Scholar
  28. Takahashi H, Awata T, Yasue H (1992) Characterization of swine short interspersed repetitive sequences. Anim Genet 23:443–448PubMedGoogle Scholar
  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  30. Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172PubMedGoogle Scholar
  31. Velten F, Rogel-Gaillard C, Renard C, Pontarotti P, Tazi-Ahnini R, Vaiman M, Chardon P (1998) A first map of the porcine major histocompatibility complex class I region. Tissue Antigens 51:183–194PubMedGoogle Scholar
  32. Velten F, Renald C, Rogel-Gaillard C, Vaiman M, Schrezenmeir J, Chardon P (1999) Spatial arrangement of pig MHC class I sequences. Immunogenetics 49:919–930CrossRefPubMedGoogle Scholar
  33. Weiner AM (1980) An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218PubMedGoogle Scholar
  34. Xu XC, Naziruddin B, Sasaki H, Smith DM. Mohanakumar T (1999) Allele-specific and peptide-dependent recognition of swine leukocyte antigen class I by human cytotoxic T-cell clines. Transplantation 68:473–479PubMedGoogle Scholar
  35. Xu Y, Rothchild MF, Warmer CM (1992) Mapping of the SLA complex of the miniature swine mapping of the SLA gene complex by pulsed-field gel electrophoresis. Mamm Genome 2:2–10PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Atsuko Shigenari
    • 1
  • Asako Ando
    • 1
  • Christine Renard
    • 2
  • Patrick Chardon
    • 2
  • Takashi Shiina
    • 1
  • Jerzy K. Kulski
    • 1
    • 3
  • Hiroshi Yasue
    • 4
  • Hidetoshi Inoko
    • 1
  1. 1.Department of Molecular Life Science, Division of Basic Medical Science and Molecular MedicineTokai University School of MedicineKanagawaJapan
  2. 2.Laboratoire de Radiobiologie et d’Etude du GenomeINRA-CEAJouy-en-JosasFrance
  3. 3.Centre for Bioinformatics and Biological Computing, School of Information Technology, Division of ArtsMurdoch UniversityMurdochAustralia
  4. 4.Genome Research DepartmentNational Institute of Agrobiological SciencesIbarakiJapan

Personalised recommendations