Immunogenetics

, Volume 55, Issue 8, pp 570–581

Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”

  • Kaoru Azumi
  • Rosaria De Santis
  • Anthony De Tomaso
  • Isidore Rigoutsos
  • Fumiko Yoshizaki
  • Maria Rosaria Pinto
  • Rita Marino
  • Kazuhito Shida
  • Makoto Ikeda
  • Masami Ikeda
  • Masafumi Arai
  • Yasuhito Inoue
  • Toshio Shimizu
  • Nori Satoh
  • Daniel S. Rokhsar
  • Louis Du Pasquier
  • Masanori Kasahara
  • Masanobu Satake
  • Masaru Nonaka
Original Paper

Abstract

Genome-wide sequence analysis in the invertebrate chordate, Ciona intestinalis, has provided a comprehensive picture of immune-related genes in an organism that occupies a key phylogenetic position in vertebrate evolution. The pivotal genes for adaptive immunity, such as the major histocompatibility complex (MHC) class I and II genes, T-cell receptors, or dimeric immunoglobulin molecules, have not been identified in the Ciona genome. Many genes involved in innate immunity have been identified, including complement components, Toll-like receptors, and the genes involved in intracellular signal transduction of immune responses, and show both expansion and unexpected diversity in comparison with the vertebrates. In addition, a number of genes were identified which predicted integral membrane proteins with extracellular C-type lectin or immunoglobulin domains and intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based activation motifs (ITAMs) (plus their associated signal transduction molecules), suggesting that activating and inhibitory receptors have an MHC-independent function and an early evolutionary origin. A crucial component of vertebrate adaptive immunity is somatic diversification, and the recombination activating genes (RAG) and activation-induced cytidine deaminase (AID) genes responsible for the Generation of diversity are not present in Ciona. However, there are key V regions, the essential feature of an immunoglobulin superfamily VC1-like core, and possible proto-MHC regions scattered throughout the genome waiting for Godot.

Keywords

Genome analysis Immunological genes Urochordate Evolution 

Supplementary material

Methods

supp_meth.pdf (36 kb)
(PDF 32 KB)

Tables S1-6

supp_tabl_1-6.pdf (52 kb)
(PDF 53 KB)

Figure Legends S1-9

supp_fig_leg.pdf (55 kb)
(PDF 60 KB)

Figures S1-7

supp_fig_1-7.pdf (29 kb)
(PDF 30 KB)

Figures S8-9

supp_fig_8_9.pdf (48 kb)
(PDF 50 KB)

References

  1. Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100–105CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326CrossRefPubMedGoogle Scholar
  4. Azumi K, Kuribayashi F, Kanegasaki S, Yokosawa H (2002) Zymosan induces production of superoxide anions by hemocytes of the solitary ascidian Halocynthia roretzi. Comp Biochem Physiol C Toxicol Pharmacol 133:567–574CrossRefPubMedGoogle Scholar
  5. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451PubMedGoogle Scholar
  6. Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474PubMedGoogle Scholar
  7. Cannon JP, Haire RN, Litman GW (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 3:1200–1207CrossRefPubMedGoogle Scholar
  8. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49CrossRefPubMedGoogle Scholar
  9. Chretien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L (1998) CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 28:4094–4104CrossRefPubMedGoogle Scholar
  10. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167CrossRefPubMedGoogle Scholar
  11. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126CrossRefPubMedGoogle Scholar
  12. Du Pasquier L (2000) The phylogenetic origin of antigen-specific receptors. In: Du Pasquier L, Litman GW (eds) Origin and evolution of the vertebrate immune system. Springer, Berlin Heidelberg New York, pp. 160–185Google Scholar
  13. Ezekowitz RA, Stahl PD (1988) The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl 9:121–133PubMedGoogle Scholar
  14. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362PubMedGoogle Scholar
  15. Hoek RM, Smit AB, Frings H, Vink JM, de Jong-Brink M, Geraerts WP (1996) A new Ig-superfamily member, molluscan defence molecule (MDM) from Lymnaea stagnalis, is down-regulated during parasitosis. Eur J Immunol 26:939–944PubMedGoogle Scholar
  16. Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126CrossRefPubMedGoogle Scholar
  17. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318CrossRefPubMedGoogle Scholar
  18. Ikeda M, Arai M, Lao DM, Shimizu T (2002) Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol 2:19–33PubMedGoogle Scholar
  19. Lao DMS T (2001) Methods for detecting the signal peptide in transmembrane and globular proteins. In: Matsuda H, Miyano S, Takagi T, Wong L (ed) Genome Informatics 2001. Universal Academy Press, Tokyo, pp. 340–342Google Scholar
  20. Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible Gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 93: 7888–7893CrossRefPubMedGoogle Scholar
  21. Marino R, Kimura Y, De Santis R, Lambris JD, Pinto MR (2002) Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53:1055–1064CrossRefPubMedGoogle Scholar
  22. Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD (2002) Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci USA 99:14350–14355CrossRefPubMedGoogle Scholar
  23. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97CrossRefPubMedGoogle Scholar
  24. Mitaku S, Ono M, Hirokawa T, Boon-Chieng S, Sonoyama M (1999) Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys Chem 82:165–171CrossRefPubMedGoogle Scholar
  25. Miyake K, Yamashita Y, Ogata M, Sudo T, Kimoto M (1995) RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154:3333–3340PubMedGoogle Scholar
  26. Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin alpha subunits from the solitary ascidian, Halocynthia roretzi. J Immunol 166:1710–1715PubMedGoogle Scholar
  27. Nonaka M (2001) Evolution of the complement system. Curr Opin Immunol 13:69–73PubMedGoogle Scholar
  28. Nonaka M, Azumi K, Ji X, Namikawa-Yamada C, Sasaki M, Saiga H, Dodds AW, Sekine H, Homma MK, Matsushita M, Endo Y, Fujita T (1999) Opsonic complement component C3 in the solitary ascidian, Halocynthia roretzi. J Immunol 162:387–391PubMedGoogle Scholar
  29. Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10:517–522PubMedGoogle Scholar
  30. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89CrossRefPubMedGoogle Scholar
  31. Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181:1857–1862PubMedGoogle Scholar
  32. Reth M (1989) Antigen receptor tail clue. Nature 338:383–384Google Scholar
  33. Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14:55–67CrossRefPubMedGoogle Scholar
  34. Rigoutsos I, Floratos A, Ouzounis C, Gao Y, Parida L (1999) Dictionary building via unsupervised hierarchical motif discovery in the sequence space of natural proteins. Proteins 37:264–277CrossRefPubMedGoogle Scholar
  35. Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779PubMedGoogle Scholar
  36. Sekine H, Kenjo A, Azumi K, Ohi G, Takahashi M, Kasukawa R, Ichikawa N, Nakata M, Mizuochi T, Matsushita M, Endo Y, Fujita T (2001) An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi. J Immunol 167:4504–4510PubMedGoogle Scholar
  37. Sottrup-Jensen L, Stepanik TM, Kristensen T, Lonblad PB, Jones CM, Wierzbicki DM, Magnusson S, Domdey H, Wetsel RA, Lundwall A, et al (1985) Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci USA 82:9–13PubMedGoogle Scholar
  38. Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250:1729–1732PubMedGoogle Scholar
  39. Takahashi H, Ishikawa G, Ueki K, Azumi K, Yokosawa H (1997) Cloning and tyrosine phosphorylation of a novel invertebrate immunocyte protein containing immunoreceptor tyrosine-based activation motifs. J Biol Chem 272:32006–32010CrossRefPubMedGoogle Scholar
  40. Terajima D, Shida K, Takada N, Kasuya A, Rokhsar D, Satho N, Satake M, Wang H-G (2003) Identification of candidate genes encoding the core components of the cell death machinery in the Ciona intestinalis genome. Cell Death Differ (in press)Google Scholar
  41. Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, and Klein J (2002) Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci USA 99:14356–14361CrossRefPubMedGoogle Scholar
  42. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291:1304–1351PubMedGoogle Scholar
  43. Volanakis JE (1998) Overview of the complement system. In: VolanakisJE, Frank MM (eds) The human complement system in health and disease. Dekker, New York, pp 9–32Google Scholar
  44. Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91:1801–1804PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Kaoru Azumi
    • 1
  • Rosaria De Santis
    • 2
  • Anthony De Tomaso
    • 3
  • Isidore Rigoutsos
    • 4
  • Fumiko Yoshizaki
    • 5
  • Maria Rosaria Pinto
    • 2
  • Rita Marino
    • 2
  • Kazuhito Shida
    • 6
  • Makoto Ikeda
    • 6
  • Masami Ikeda
    • 7
  • Masafumi Arai
    • 7
  • Yasuhito Inoue
    • 7
  • Toshio Shimizu
    • 7
  • Nori Satoh
    • 8
  • Daniel S. Rokhsar
    • 9
  • Louis Du Pasquier
    • 10
  • Masanori Kasahara
    • 11
  • Masanobu Satake
    • 12
  • Masaru Nonaka
    • 5
  1. 1.Department of Biochemistry, Graduate School of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
  2. 2.Stazione Zoologica “Anton Dohrn”NaplesItaly
  3. 3.Department of PathologyStanford University School of MedicineStanfordUSA
  4. 4.Bioinformatics and Pattern Discovery GroupIBM Thomas J. Watson Research CenterYorktown HeightsUSA
  5. 5.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoTokyoJapan
  6. 6.Center for Interdisciplinary ResearchTohoku UniversitySendaiJapan
  7. 7.Department of Electronic Information System Engineering, Faculty of Science and TechnologyHirosaki UniversityHirosakiJapan
  8. 8.Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
  9. 9.U.S. Department of Energy Joint Genome InstituteWalnut CreekUSA
  10. 10.Department of ZoologyUniversity of BaselBaselSwitzerland
  11. 11.Department of Biosystems Science, School of Advanced SciencesThe Graduate University for Advanced Studies (Sokendai)HayamaJapan
  12. 12.Department of Molecular Immunology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan

Personalised recommendations