Immunogenetics

, Volume 55, Issue 3, pp 157–164

Haplotype diversity in the interleukin-4 gene is not associated with HIV-1 transmission and AIDS progression

  • William S. Modi
  • Thomas R. O'Brien
  • David Vlahov
  • Susan Buchbinder
  • Edward Gomperts
  • John Phair
  • Stephen J. O'Brien
  • Cheryl Winkler
Original Paper

Abstract

Interleukin-4 (IL-4) is a pleiotropic cytokine produced primarily by activated CD4+ T lymphocytes, mast cells, and basophils. It modulates the functions of a variety of cell types involved with the immune response. This cytokine differentially regulates two major HIV-1 coreceptors and activates viral expression, and is thus a reasonable candidate gene for analyses in HIV-1/AIDS cohort studies. Population genetic variation in five single nucleotide polymorphisms (SNPs) in the 5′ region of the IL-4 gene was assessed in five racial groups. Neutrality tests reveal that the populations are evolving in accord with the infinite-sites model. However, coalescent simulations suggest greater haplotype diversity among African Americans than expected. This increased variation is presumably attributable to recombination or gene conversion. Genetic epidemiological analyses were conducted among European American and African American participants enrolled in five USA-based HIV-1/AIDS cohorts. One SNP, −589T, known to influence IL-4 transcription was previously shown to be associated with HIV-1/AIDS in both Japanese and French populations. Present analyses failed to identify any significant associations with HIV-1 infection or progression to AIDS.

Keywords

HIV-1 AIDS Interleukin-4 Haplotype diversity Recombination hotspot 

References

  1. Ardlie K, Liu-Cordero SN, Eberle MA, Daly M, Barrett J, Winchester E, Lander ES, Kruglyak L (2001) Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am J Hum Genet 69:582–589CrossRefPubMedGoogle Scholar
  2. Borish L, Mascali JJ, Klinnert M, Leppert M, Rosenwasser LJ (1994) SSC polymorphisms in interleukin genes [published erratum appears in Hum Mol Genet (1995) 4:974]. Hum Mol Genet 3:1710Google Scholar
  3. Buchbinder SP, Katz MH, Hessol NA, O'Malley PM, Holmberg SD (1994) Long-term HIV-1 infection without immunologic progression (see comments). AIDS 8:1123–1128PubMedGoogle Scholar
  4. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R, Buchbinder S, Hoots K, O'Brien SJ (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283:1748–1752CrossRefPubMedGoogle Scholar
  5. Centers for Disease Control (1987) Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. MMWR Morb Mortal Wkly Rep 36 [Suppl 1]:1–15SGoogle Scholar
  6. Cohen OJ, Kinter A, Fauci AS (1997) Host factors in the pathogenesis of HIV disease. Immunol Rev 159:31–48PubMedGoogle Scholar
  7. Connor RI, Mohri H, Cao Y, Ho DD (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J Virol 67:1772–1777PubMedGoogle Scholar
  8. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862PubMedGoogle Scholar
  9. Del Prete G, Maggi E, Parronchi P, Chretien I, Tiri A, Macchia D, Ricci M, Banchereau J, De Vries J, Romagnani S (1988) IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants. J Immunol 140:4193–4198PubMedGoogle Scholar
  10. Detels R, Liu Z, Hennessey K, Kan J, Visscher BR, Taylor JM, Hoover DR, Rinaldo CR Jr, Phair JP, Saah AJ, et al (1994) Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 7:1263–1269PubMedGoogle Scholar
  11. Galli G, Annunziato F, Mavilia C, Romagnani P, Cosmi L, Manetti R, Pupilli C, Maggi E, Romagnani S (1998) Enhanced HIV expression during Th2-oriented responses explained by the opposite regulatory effect of IL-4 and IFN-gamma of fusin/CXCR4. Eur J Immunol 28:3280–3290CrossRefPubMedGoogle Scholar
  12. Gao X, Nelson GW, Karacki P, Martin MP, Phair J, Kaslow R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, O'Brien SJ, Carrington M (2001) Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 344:1668–1675CrossRefPubMedGoogle Scholar
  13. Goedert JJ, Kessler CM, Aledort LM, Biggar RJ, Andes WA, White GCD, Drummond JE, Vaidya K, Mann DL, Eyster ME, et al. (1989) A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia (see comments). N Engl J Med 321:1141–1148PubMedGoogle Scholar
  14. Hilgartner MW, Donfield SM, Willoughby A, Contant CF Jr, Evatt BL, Gomperts ED, Hoots WK, Jason J, Loveland KA, McKinlay SM, et al (1993) Hemophilia growth and development study. Design, methods, and entry data. Am J Pediatr Hematol Oncol 15:208–218Google Scholar
  15. Hudson RR (1990) Gene genealogies and the coelescent press. Oxford surveys in evolutionary biology, vol 1. OxfordGoogle Scholar
  16. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedGoogle Scholar
  17. Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, Rinaldo CR Jr (1987) The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. Am J Epidemiol 126: 310–318PubMedGoogle Scholar
  18. Klein SA, Dobmeyer JM, Dobmeyer TS, Pape M, Ottmann OG, Helm EB, Hoelzer D, Rossol R (1997) Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS 11:1111–1118PubMedGoogle Scholar
  19. Long JC, Williams RC, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 56:799–810PubMedGoogle Scholar
  20. Modi WS, Bergeron J, Sanford M (2001) The human MIP-1beta chemokine is encoded by two paralogous genes, ACT-2 and LAG-1. Immunogenetics 53:543–549PubMedGoogle Scholar
  21. Nakayama EE, Hoshino Y, Xin X, Liu H, Goto M, Watanabe N, Taguchi H, Hitani A, Kawana-Tachikawa A, Fukushima M, Yamada K, Sugiura W, Oka SI, Ajisawa A, Sato H, Takebe Y, Nakamura T, Nagai Y, Iwamoto A, Shioda T (2000) Polymorphism in the interleukin-4 promoter affects acquisition of human immunodeficiency virus type 1 syncytium-inducing phenotype. J Virol 74:5452–5459CrossRefPubMedGoogle Scholar
  22. Nakayama EE, Meyer L, Iwamoto A, Persoz A, Nagai Y, Rouzioux C, Delfraissy JF, Debre P, McIlroy D, Theodorou I, Shioda T (2002) Protective effect of interleukin-4 −589T polymorphism on human immunodeficiency virus type 1 disease progression: relationship with virus load. J Infect Dis 185:1183–1186Google Scholar
  23. Paul WE (1991) Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77:1859–1870PubMedGoogle Scholar
  24. Przeworski M, Hudson RR, Di Rienzo A (2000) Adjusting the focus on human variation. Trends Genet 16:296–302PubMedGoogle Scholar
  25. Rosenwasser LJ, Klemm DJ, Dresback JK, Inamura H, Mascali JJ, Klinnert M, Borish L (1995) Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy 25 [Suppl 2]:74–78; discussion 95–96Google Scholar
  26. Rozas J, Rozas R (2000) DnaSP 3.51. DNA sequence polymorphisms. University of Barcelona, BarcelonaGoogle Scholar
  27. Rutherford GW, Lifson AR, Hessol NA, Darrow WW, O'Malley PM, Buchbinder SP, Barnhart JL, Bodecker TW, Cannon L, Doll LS, et al (1990) Course of HIV-I infection in a cohort of homosexual and bisexual men: an 11 year follow up study. BMJ 301:1183-1188PubMedGoogle Scholar
  28. Salkowitz JR, Purvis SF, Meyerson H, Zimmerman P, O'Brien TR, Aledort L, Eyster ME, Hilgartner M, Kessler C, Konkle BA, White GC 2nd, Goedert JJ, Lederman MM (2001) Characterization of high-risk HIV-1 seronegative hemophiliacs. Clin Immunol 98:200–211CrossRefPubMedGoogle Scholar
  29. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA Jr, McIntyre BW, et al. (1992) IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148:1086–1092PubMedGoogle Scholar
  30. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O'Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O'Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277: 959–965CrossRefPubMedGoogle Scholar
  31. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489–493PubMedGoogle Scholar
  32. Swofford DL (1998) PAUP*, Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland, Sinauer, Mass.Google Scholar
  33. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  34. Takabayashi A, Ihara K, Sasaki Y, Kusuhara K, Nishima S, Hara T (1999) Novel polymorphism in the 5′-untranslated region of the interleukin-4 gene. J Hum Genet 44:352–353CrossRefPubMedGoogle Scholar
  35. Templeton AR, Clark AG, Weiss KM, Nickerson DA, Boerwinkle E, Sing CF (2000) Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am J Hum Genet 66:69–83PubMedGoogle Scholar
  36. Todorova A, Danieli GA (1997) Large majority of single-nucleotide mutations along the dystrophin gene can be explained by more than one mechanism of mutagenesis. Hum Mutat 9: 537–547CrossRefPubMedGoogle Scholar
  37. Torroni A, Schurr TG, Yang CC, Szathmary EJ, Williams RC, Schanfield MS, Troup GA, Knowler WC, Lawrence DN, Weiss KM, et al (1992) Native American mitochondrial DNA analysis indicates that the Amerind and the Nadene populations were founded by two independent migrations. Genetics 130:153–162PubMedGoogle Scholar
  38. Valentin A, Lu W, Rosati M, Schneider R, Albert J, Karlsson A, Pavlakis GN (1998) Dual effect of interleukin 4 on HIV-1 expression: implications for viral phenotypic switch and disease progression. Proc Natl Acad Sci USA 95:8886–8891CrossRefPubMedGoogle Scholar
  39. Vitetta ES, Ohara J, Myers CD, Layton JE, Krammer PH, Paul WE (1985) Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med 162:1726–1731PubMedGoogle Scholar
  40. Vlahov D, Polk BF (1988) Perspectives on infection with HIV-1 among intravenous drug users. Psychopharmacol Bull 24:325-329Google Scholar
  41. Vlahov D, Graham N, Hoover D, Flynn C, Bartlett JG, Margolick JB, Lyles CM, Nelson KE, Smith D, Holmberg S, Farzadegan H (1998) Prognostic indicators for AIDS and infectious disease death in HIV- infected injection drug users: plasma viral load and CD4+ cell count. JAMA 279:35–40PubMedGoogle Scholar
  42. Wang J, Harada A, Matsushita S, Matsumi S, Zhang Y, Shioda T, Nagai Y, Matsushima K (1998) IL-4 and a glucocorticoid up-regulate CXCR4 expression on human CD4+ T lymphocytes and enhance HIV-1 replication. J Leukoc Biol 64:642–649PubMedGoogle Scholar
  43. Wasik TJ, Jagodzinski PP, Hyjek EM, Wustner J, Trinchieri G, Lischner HW, Kozbor D (1997) Diminished HIV-specific CTL activity is associated with lower type 1 and enhanced type 2 responses to HIV-specific peptides during perinatal HIV infection. J Immunol 158: 6029–6036PubMedGoogle Scholar
  44. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O'Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O'Brien SJ (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science 279: 389–393PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • William S. Modi
    • 1
  • Thomas R. O'Brien
    • 2
  • David Vlahov
    • 3
    • 8
  • Susan Buchbinder
    • 4
  • Edward Gomperts
    • 5
  • John Phair
    • 6
  • Stephen J. O'Brien
    • 7
  • Cheryl Winkler
    • 1
  1. 1.Basic Research Program, SAIC FrederickNational Cancer Institute-FCRDCFrederickUSA
  2. 2.Viral Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleUSA
  3. 3.Johns Hopkins School of Hygiene and Public Health for AIDS Link to the Intravenous ExperienceBaltimoreUSA
  4. 4.San Francisco Department of Public HealthSan FranciscoUSA
  5. 5.Children's Hospital Los AngelesLos AngelesUSA
  6. 6.Department of MedicineNorthwestern University Medical SchoolEvanstonUSA
  7. 7.Laboratory of Genomic DiversityNational Cancer Institute-FCRDCFrederickUSA
  8. 8.New York Academy of MedicineNew YorkUSA

Personalised recommendations