Advertisement

The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties

  • Matteo de RosaEmail author
  • Alberto Barbiroli
  • Francesco Bonì
  • Emanuele Scalone
  • Davide Mattioni
  • Maria A. Vanoni
  • Marco Patrone
  • Michela Bollati
  • Eloise Mastrangelo
  • Toni Giorgino
  • Mario Milani
Original Article

Abstract

Mutations in the gelsolin protein are responsible for a rare conformational disease known as AGel amyloidosis. Four of these mutations are hosted by the second domain of the protein (G2): D187N/Y, G167R and N184K. The impact of the latter has been so far evaluated only by studies on the isolated G2. Here we report the characterization of full-length gelsolin carrying the N184K mutation and compare the findings with those obtained on the wild type and the other variants. The crystallographic structure of the N184K variant in the Ca2+-free conformation shows remarkable similarities with the wild type protein. Only minimal local rearrangements can be observed and the mutant is as efficient as the wild type in severing filamentous actin. However, the thermal stability of the pathological variant is compromised in the Ca2+-free conditions. These data suggest that the N to K substitution causes a local disruption of the H-bond network in the core of the G2 domain. Such a subtle rearrangement of the connections does not lead to significant conformational changes but severely affects the stability of the protein.

Keywords

Agel amyloidosis Gelsolin X-ray crystallography Thermal stability Misfolding 

Notes

Acknowledgments

This research was supported by a Research Grant of the Amyloidosis Foundation (Michigan, United States) awarded to MdR. The diffraction experiments were performed on beamline ID23-1, ID29 and Massif-3 at the European Synchrotron Radiation Facility (ESRF, France). We are thankful for the provided beamtime and assistance during the measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Afonine PV, Poon BK, Read RJ et al (2018) Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 74:531–544PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ashish PMS, Perryman PB et al (2007) Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin. J Biol Chem 282:25884–25892PubMedCrossRefGoogle Scholar
  3. Badmalia MD, Singh S, Garg R, Ashish PMS (2017) Visualizing temperature mediated activation of gelsolin and its deactivation by pip: a Saxs based study. Sci Rep 7:4670PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bollati M, Scalone E, Bonì F et al (2019) High-resolution crystal structure of gelsolin domain 2 in complex with the physiological calcium ion. Biochem Biophys Res Commun 518:94–99PubMedCrossRefGoogle Scholar
  5. Bonì F, Milani M, Porcari R et al (2016) Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Sci Rep 6:33463PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bonì F, Milani M, Barbiroli A et al (2018) Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Hum Mol Genet 27:53–65PubMedCrossRefGoogle Scholar
  7. Burtnick LD, Koepf EK, Grimes J et al (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90:661–670PubMedCrossRefGoogle Scholar
  8. Chen CD, Huff ME, Matteson J et al (2001) Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization. EMBO J 20:6277–6287PubMedPubMedCentralCrossRefGoogle Scholar
  9. Clabbers MTB, Gruene T, Parkhurst JM et al (2018) Electron diffraction data processing with DIALS. Acta Crystallogr D Struct Biol 74:506–518PubMedPubMedCentralCrossRefGoogle Scholar
  10. de la Chapelle A, Tolvanen R, Boysen G et al (1992) Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet 2:157–160PubMedCrossRefGoogle Scholar
  11. de Rosa M, Barbiroli A, Giorgetti S et al (2015) Decoding the structural bases of D76N ß2-microglobulin high amyloidogenicity through crystallography and Asn-Scan mutagenesis. PLoS ONE 10:e0144061PubMedPubMedCentralCrossRefGoogle Scholar
  12. Efebera YA, Sturm A, Baack EC et al (2014) Novel gelsolin variant as the cause of nephrotic syndrome and renal amyloidosis in a large kindred. Amyloid 21:110–112PubMedPubMedCentralCrossRefGoogle Scholar
  13. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501PubMedPubMedCentralCrossRefGoogle Scholar
  14. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214PubMedPubMedCentralCrossRefGoogle Scholar
  15. Garg R, Peddada N, Sagar A et al (2011) Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions. J Biol Chem 286:20387–20397PubMedPubMedCentralCrossRefGoogle Scholar
  16. Giorgino T, Mattioni D, Hassan A et al (2019) Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant. Biochim Biophys Acta Mol Basis Dis 1865:648–660PubMedCrossRefGoogle Scholar
  17. Huff ME, Page LJ, Balch WE, Kelly JW (2003) Gelsolin domain 2 Ca2+ affinity determines susceptibility to furin proteolysis and familial amyloidosis of finnish type. J Mol Biol 334:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  18. Isaacson RL, Weeds AG, Fersht AR (1999) Equilibria and kinetics of folding of gelsolin domain 2 and mutants involved in familial amyloidosis-Finnish type. Proc Natl Acad Sci USA 96:11247–11252PubMedCrossRefGoogle Scholar
  19. Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132CrossRefGoogle Scholar
  20. Kazmirski SL, Howard MJ, Isaacson RL, Fersht AR (2000) Elucidating the mechanism of familial amyloidosis-Finnish type: NMR studies of human gelsolin domain 2. Proc Natl Acad Sci USA 97:10706–10711PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kazmirski SL, Isaacson RL, An C et al (2002) Loss of a metal-binding site in gelsolin leads to familial amyloidosis-Finnish type. Nat Struct Biol 9:112–116PubMedCrossRefPubMedCentralGoogle Scholar
  22. Khaitlina S, Walloscheck M, Hinssen H (2004) Calcium-induced conformational changes in the C-terminal half of gelsolin stabilize its interaction with the actin monomer. Biochemistry 43:12838–12845PubMedCrossRefGoogle Scholar
  23. Kiselar JG, Janmey PA, Almo SC, Chance MR (2003) Structural analysis of gelsolin using synchrotron protein footprinting. Mol Cell Proteomics 2:1120–1132PubMedCrossRefPubMedCentralGoogle Scholar
  24. Laskowski RA, Swindells MB (2011) LigPlot: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786PubMedPubMedCentralCrossRefGoogle Scholar
  25. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674PubMedPubMedCentralCrossRefGoogle Scholar
  26. Meretoja J (1969) Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann Clin Res 1:314–324PubMedGoogle Scholar
  27. Nag S, Ma Q, Wang H et al (2009) Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci USA 106:13713–13718PubMedCrossRefGoogle Scholar
  28. Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70:360–384PubMedCrossRefGoogle Scholar
  29. Nicholls RA, Fischer M, McNicholas S, Murshudov GN (2014) Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr D Biol Crystallogr 70:2487–2499PubMedPubMedCentralCrossRefGoogle Scholar
  30. Page LJ, Suk JY, Huff ME et al (2005) Metalloendoprotease cleavage triggers gelsolin amyloidogenesis. EMBO J 24:4124–4132PubMedPubMedCentralCrossRefGoogle Scholar
  31. Patel VB, Zhabyeyev P, Chen X et al (2018) PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease. Nat Commun 9:5390PubMedPubMedCentralCrossRefGoogle Scholar
  32. Pope B, Maciver S, Weeds A (1995) Localization of the calcium-sensitive actin monomer binding site in gelsolin to segment 4 and identification of calcium binding sites. Biochemistry 34:1583–1588PubMedCrossRefGoogle Scholar
  33. Ratnaswamy G, Huff ME, Su AI et al (2001) Destabilization of Ca2 -free gelsolin may not be responsible for proteolysis in Familial Amyloidosis of Finnish Type. Proc Natl Acad Sci 98:2334–2339PubMedCrossRefGoogle Scholar
  34. Sethi S, Theis JD, Quint P et al (2013) Renal amyloidosis associated with a novel sequence variant of gelsolin. Am J Kidney Dis 61:161–166PubMedCrossRefGoogle Scholar
  35. Solomon JP, Yonemoto IT, Murray AN et al (2009) The 8 and 5 kDa fragments of plasma gelsolin form amyloid fibrils by a nucleated polymerization mechanism, while the 68 kDa fragment is not amyloidogenic. Biochemistry 48:11370–11380PubMedPubMedCentralCrossRefGoogle Scholar
  36. Srivastava A, Singh J, Singh Yadav SP et al (2018) The Gelsolin pathogenic D187N mutant exhibits altered conformational stability and forms amyloidogenic oligomers. Biochemistry 57:2359–2372PubMedCrossRefGoogle Scholar
  37. Szatmári D, Xue B, Kannan B et al (2018) ATP competes with PIP2 for binding to gelsolin. PLoS ONE 13:e0201826PubMedPubMedCentralCrossRefGoogle Scholar
  38. Vanoni MA, Vitali T, Zucchini D (2013) MICAL, the flavoenzyme participating in cytoskeleton dynamics. Int J Mol Sci 14:6920–6959PubMedPubMedCentralCrossRefGoogle Scholar
  39. Vitali T, Maffioli E, Tedeschi G, Vanoni MA (2016) Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains. Arch Biochem Biophys 593:24–37PubMedCrossRefPubMedCentralGoogle Scholar
  40. Zapun A, Grammatyka S, Déral G, Vernet T (2000) Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin. Biochem J 350(Pt 3):873–881PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zorgati H, Larsson M, Ren W et al (2019) The role of gelsolin domain 3 in familial amyloidosis (Finnish type). Proc Natl Acad Sci USA 116:13958–13963PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Istituto di BiofisicaConsiglio Nazionale delle RicercheMilanItaly
  2. 2.Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
  3. 3.Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’AmbienteUniversità degli Studi di MilanoMilanItaly
  4. 4.Biocrystallography Unit, Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly

Personalised recommendations