Distance measurements in the F0F1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy

  • Markus Burger
  • Stephan Rein
  • Stefan Weber
  • Peter GräberEmail author
  • Sylwia Kacprzak
Original Article


Fluorescence resonance energy transfer in single enzyme molecules (smFRET, single-molecule measurement) allows the measurement of multicomponent distance distributions in complex biomolecules similar to pulsed electron–electron double resonance (PELDOR, ensemble measurement). Both methods use reporter groups: FRET exploits the distance dependence of the electric interaction between electronic transition dipole moments of the attached fluorophores, whereas PELDOR spectroscopy uses the distance dependence of the interaction between the magnetic dipole moments of attached spin labels. Such labels can be incorporated easily to cysteine residues in the protein. Comparison of distance distributions obtained with both methods was carried out with the H+-ATPase from Escherichia coli (EF0F1). The crystal structure of this enzyme is known. It contains endogenous cysteines, and as an internal reference two additional cysteines were introduced (EF0F1–γT106C–εH56C). These positions were chosen to allow application of both methods under optimal conditions. Both methods yield very similar multicomponent distance distributions. The dominating distance distribution (> 50%) is due to the two cysteines introduced by site-directed mutagenesis and the distance is in agreement with the crystal structure. Two additional distance distributions are detected with smFRET and with PELDOR. These can be assigned by comparison with the structure to labels at endogenous cysteines. One additional distribution is detected only with PELDOR. The comparison indicates that under optimal conditions smFRET and PELDOR result in the same distance distributions. PELDOR has the advantage that different distributions can be obtained with ensemble measurements, whereas FRET requires single-molecule techniques.


Single-molecule spectroscopy smFRET EF0F1 PELDOR DEER Distance measurements 



The authors thank the Deutsche Forschungsgemeinschaft for general support and SW thanks especially for the (Grant INST 39/928-1 FUGG) for financing, together with the “Struktur- und Innovationsfonds für die Forschung Baden-Württemberg” (SIBW), pulsed EPR instrumentation that is operated within the MagRes Center of the Albert-Ludwigs-Universität Freiburg.

Supplementary material

249_2019_1408_MOESM1_ESM.pdf (716 kb)
Supplementary material 1 (PDF 717 kb)


  1. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aggeler R, Capaldi RA (1992) Cross-linking of the gamma subunit of the Escherichia coli ATPase (ECF1) via cysteines introduced by site-directed mutagenesis. J Biol Chem 267:21355–21359PubMedPubMedCentralGoogle Scholar
  3. Bienert R, Zimmermann B, Rombach-Riegraf V, Gräber P (2011) Time-dependent FRET with single enzymes: domain motions and catalysis in H+-ATP synthases. ChemPhysChem 12:510–517PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bordignon E, Steinhoff HJ (2007) Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR. In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics, vol 217. Kluwer Academic/Plenum Publ, New York, pp 129–164CrossRefGoogle Scholar
  5. Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P (2002) Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527:147–152PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boyer PD (1993) The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim Biophys Acta 1140:215–250PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chiang Y-W, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172:279–295PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707PubMedPubMedCentralCrossRefGoogle Scholar
  9. Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CAM, Gräber P (2004) Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11:135–141PubMedCrossRefPubMedCentralGoogle Scholar
  10. Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 1757:326–338PubMedCrossRefPubMedCentralGoogle Scholar
  11. Fischer S, Gräber P (1999) Comparison of ΔpH- and Δφ-Driven ATP Synthesis Catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted into Liposomes. FEBS Lett 457:327–332PubMedCrossRefPubMedCentralGoogle Scholar
  12. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys Berl 437:55–75CrossRefGoogle Scholar
  13. Grohmann D, Klose D, Klare JP, Kay CWM, Steinhoff H-J, Werner F (2010) RNA-binding to archaeal RNA polymerase subunits F/E: a DEER and FRET study. J Am Chem Soc 132:5954–5955PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hellenkamp B et al (2017) Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat Methods 14:3597–3619CrossRefGoogle Scholar
  16. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972PubMedCrossRefPubMedCentralGoogle Scholar
  17. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446PubMedCrossRefPubMedCentralGoogle Scholar
  18. Jeschke G (2016) Dipolar spectroscopy1double-resonance methods. eMagRes 5:1459–1475CrossRefGoogle Scholar
  19. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006—a comprehensive software package for analyzing PELDOR data. Appl Magn Reson 30:473–498CrossRefGoogle Scholar
  20. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102:377–390PubMedCrossRefPubMedCentralGoogle Scholar
  21. Klose D, Klare JP, Grohmann D, Kay CWM, Werner F, Steinhoff H-J (2012) Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements. PLoS One 7:e39492PubMedPubMedCentralCrossRefGoogle Scholar
  22. Landi G, Zama F (2006) The active-set method for nonnegative regularization of linear ill-posed problems. Appl Math Comput 175:715–729Google Scholar
  23. McInnes EJL, Collison D (2016) EPR interactions1coupled spins. eMagRes 5:1445–1458CrossRefGoogle Scholar
  24. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619CrossRefGoogle Scholar
  25. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302CrossRefPubMedGoogle Scholar
  26. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera-A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  28. Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–96CrossRefGoogle Scholar
  29. Rein S, Lewe P, Andrade SL, Kacprzak S, Weber S (2018) Global analysis of complex PELDOR time traces. J Magn Reson 295:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  30. Rodgers AJW, Wilce MCJ (2000) Structure of the γ–ε complex of ATP synthase. Nat Struct Mol Biol 7:1051–1054CrossRefGoogle Scholar
  31. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by epr spectroscopy. Q Rev Biophys 40:1–53PubMedCrossRefPubMedCentralGoogle Scholar
  32. Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM (2016) Long distance measurements up to 160 Å in the GroEL tetradecamer using Q-band DEER EPR spectroscopy. Angew Chem Ind Ed 55:15905–15909CrossRefGoogle Scholar
  33. Sielaff H, Duncan TM, Börsch M (2018) The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Biochim Biophys Acta 1859:775–788CrossRefGoogle Scholar
  34. Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG (2016) Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 5:e21598PubMedPubMedCentralCrossRefGoogle Scholar
  35. Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Stocker R, Duncan TM, Stewart AG (2019) Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 8:e43864PubMedPubMedCentralCrossRefGoogle Scholar
  36. Steigmiller S, Börsch M, Gräber P, Huber M (2005) Distances between the b-subunits in the tether domain of F0F1-ATP synthase from E. coli. Biochim Biophys Acta 1708:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  37. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726CrossRefPubMedGoogle Scholar
  38. Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Transl Sov Math 4:1035–1038 (151, 501-504) Google Scholar
  39. Uhlin U, Cox GB, Guss JM (1997) Crystal structure of the ε subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219–1230PubMedCrossRefPubMedCentralGoogle Scholar
  40. Vámosi G, Gohlke C, Clegg RM (1996) Fluorescence characteristics of 5-Carboxytetramethylrhodamine linked covalently to the 5′ end of oligonucleotides: multiple conformers of single-stranded and double-stranded Dye-DNA complexes. Biophys J 71:972–994PubMedPubMedCentralCrossRefGoogle Scholar
  41. van der Meer BW, Coker GI, Chen S (1994) S-Y, resonance energy transfer: theory and data. VCH, New YorkGoogle Scholar
  42. Zarrabi N, Zimmermann B, Diez M, Gräber P, Wrachtrup J, Börsch M (2005) Asymmetry of rotational catalysis of single membrane-bound F0F1-ATP synthase. Proc SPIE 5699:175–188CrossRefGoogle Scholar
  43. Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M (2005) Movements of the ɛ-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO J 24:2053–2063PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations