Advertisement

Study of the complex coacervation mechanism between ovalbumin and the strong polyanion PSSNa: influence of temperature and pH

  • Wafa Feddaoui
  • Adel AschiEmail author
  • Houda Bey
  • Tahar Othman
Original Article
  • 21 Downloads

Abstract

We studied the complex between ovalbumin and long flexible poly-(sodium 4-styrene sulfonate) as a function of pH and temperature. We used various techniques [turbidimetry, conductometry, dynamic light scattering, viscosimetry, and ultra-small-angle light scattering (USALS)] to fully characterize the coacervate complex. Different phases of complexation versus temperature were determined by turbidimetric analysis (pHc, pHϕ1, and pHϕ2). The optimal protein/polyelectrolyte interaction occurred at pHopt 4. An increase in temperature made the hydrophobic interactions more favorable in the case of the soluble complex and complex coacervation phases (pH > pHϕ2). We systematically determined the activation energy to follow the conformational changes of the complex at different temperatures. At pHopt, the size of the formed complex showed a remarkable decrease with temperature increase. USALS was used to determine simultaneously the radius of gyration (Rg) and fractal dimension Df of the coacervate.

Keywords

Electrical conductivity Dynamic light scattering Ultra-small-angle static light scattering Complex coacervation Fractal dimension 

Notes

Acknowledgements

This research was supported by the Ministry of Higher Education and Scientifi Research in Tunisia (MHESRT). We thank Pr. Luca cipelletti from Laboratory of Charles Coulomb University of Montpellier, France, for the help with the USALS software.

References

  1. Abbes F, Masmoudi M, Kchaou W, Danthine S, Blecker C, Attia H, Besbes S (2015) Effect of enzymatic treatment on rheological properties, glass temperature transition and microstructure of date syrup. LWT Food Sci Technol 60(1):339–345.  https://doi.org/10.1016/j.lwt.2014.08.027 CrossRefGoogle Scholar
  2. Aubert C, Cannell DS (1986) Restructuring of colloidal silica aggregates. Physl Rev Lett.  https://doi.org/10.1103/PhysRevLett.56.738 CrossRefGoogle Scholar
  3. Ayadi M, Leuliet J, Chopard F, Berthou M, Lebouche M (2004) Electrical conductivity of whey protein deposit: Xanthan gum effect on temperature dependency. Food Bioprod Process 82:320–325.  https://doi.org/10.1205/fbio.82.4.320.56398 CrossRefGoogle Scholar
  4. Benoit P, Deransart E (1976) La conductivité-définition: loi de la conductivite´, les mesures physico-chimiques dans l’industrie, pH, potentiel d’oxydo-réduction, conductivité, ions spécifiques. In: Benoit P, Deransart E (eds) Techniques et Documentation, Entreprise Moderne d’Edition, Paris, France, pp 225–231, 265–286Google Scholar
  5. Berne B, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology, and physics. Dover Publications, New YorkGoogle Scholar
  6. Bordi F, Colby RH, Cametti C, De Lorenzo L, Gili T (2002) Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: the role of counterion condensation. J Phys Chem B 106:6887–6893.  https://doi.org/10.1021/jp020262i CrossRefGoogle Scholar
  7. Bowman W, Rubinstein M, Tan J (1997) Polyelectrolyte−gelatin complexation: light-scattering study. Macromolecules 30:3262–3270.  https://doi.org/10.1021/ma961915u CrossRefGoogle Scholar
  8. Brown W (1993) Dynamic light scattering: the method and some applications. Clarendon Press, OxfordGoogle Scholar
  9. Cao Y, Fang Y, Nishinari K, Phillips GO (2016) Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening. Sci Rep 6(23739):1–11.  https://doi.org/10.1038/srep23739 CrossRefGoogle Scholar
  10. Chen SH, Teixeira J (1986) Structure and fractal dimension of protein–detergent complexes. Phys Rev Lett 57:2583.  https://doi.org/10.1103/PhysRevLett.57.2583 CrossRefPubMedGoogle Scholar
  11. Cipelletti L, Manley S, Ball R, Weitz D (2000) Universal aging features in the restructuring of fractal colloidal gels. Phys Rev Lett 84:2275.  https://doi.org/10.1103/PhysRevLett.84.2275 CrossRefPubMedGoogle Scholar
  12. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169.  https://doi.org/10.1063/1.1730566 CrossRefGoogle Scholar
  13. Cousin F, Gummel J, Combet S, Boué F (2011) The model Lysozyme-PSSNa system for electrostatic complexation: Similarities and differences with complex coacervation. Adv Coll Interface Sci 167:71–84.  https://doi.org/10.1016/j.cis.2011.05.007 CrossRefGoogle Scholar
  14. De Alwis AAP, Fryer PJ (1992) Operability of the ohmic heating process: electrical conductivity effects. J Food Eng 15:21–48.  https://doi.org/10.1016/0260-8774(92)90038-8 CrossRefGoogle Scholar
  15. Espinosa-Andrews H, Baez-Gonzalez JG, Cruz-Sosa F, Vernon-Carter EJ (2007) Gum arabic–chitosan complex coacervation. Biomacromol 8:1313–1318.  https://doi.org/10.1021/bm0611634 CrossRefGoogle Scholar
  16. Ferri F (1997) Use of a charge coupled device camera for low-angle elastic light scattering. Rev Sci Instrum 68(6):2265–2274.  https://doi.org/10.1063/1.1148135 CrossRefGoogle Scholar
  17. Girard M, Turgeon SL, Gauthier SF (2002) Inter biopolymer complexing between β lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocoll 16:585–591.  https://doi.org/10.1016/S0268-005X(02)00020-6 CrossRefGoogle Scholar
  18. Gold B (2014)Stereoelectronic control of cycloadditions and fragmentationsFlorida State University College of Arts and Science. Thesis November 6Google Scholar
  19. Gtari W, Bey H, Aschi A, Othman T (2017) Impact of macromolecular crowding on structure and properties of pepsin and trypsin. Mater Sci Eng C 72:98–105.  https://doi.org/10.1016/j.msec.2016.11.046 CrossRefGoogle Scholar
  20. Guerin R, Delplace G, Dieulot JY, Leuliet JC, Le Bouche MA (2004) Method for detecting in real time structure changes of food products during a heat transfer process. J Food Eng 64:289–296.  https://doi.org/10.1016/j.jfoodeng.2003.10.011 CrossRefGoogle Scholar
  21. Guinier A, Fournet G, Walker C (1955) Small angle scattering of X-rays. Wiley, New York, DOIGoogle Scholar
  22. Gummel J, Boué F, Clemens D, Cousin F (2008) Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes. Soft Matter 4:1653–1664.  https://doi.org/10.1039/B803773F CrossRefGoogle Scholar
  23. Kaibara K, Okazaki T, Bohidar H, Dubin P (2000) pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes. Biomacromol 1:100–107.  https://doi.org/10.1021/bm990006k CrossRefGoogle Scholar
  24. Kantor Y, Witten T (1984) Mechanical stability of tenuous objects. Journal de physique Lettres 45:675–679.  https://doi.org/10.1051/jphyslet:019840045013067500 CrossRefGoogle Scholar
  25. Li X, Fang Y, Al-Assaf S, Phillips GO, Yao X, Zhang Y, Zhao M, Zhang K, Jiang F (2012) Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir 28:10164–10176.  https://doi.org/10.1021/la302063u CrossRefPubMedGoogle Scholar
  26. Liberatore MW, Wyatt NB, Henry M, Dubin PL, Foun E (2009) Shear-induced phase separation in polyelectrolyte/mixed micelle coacervates. Langmuir 25(23):13376–13383.  https://doi.org/10.1021/la903260r CrossRefPubMedGoogle Scholar
  27. Liu SH, Low NH, Nickerson MT (2009) Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate–gum Arabic complexes. J Agric Food Chem 57:1521–1526.  https://doi.org/10.1021/jf802643n CrossRefPubMedGoogle Scholar
  28. Liu S, Cao YL, Ghosh S, Rousseau DR, Low NH, Nickerson MT (2010) Intermolecular interactions during complex coacervation of pea protein isolate and gum Arabic. J Agric Food Chem 58:552–556.  https://doi.org/10.1021/jf902768v CrossRefPubMedGoogle Scholar
  29. Mine Y (1995) Recent advances in the understanding of egg white protein functionality. Trends Food Sci Technol 6:225–232.  https://doi.org/10.1016/S0924-2244(00)89083-4 CrossRefGoogle Scholar
  30. Niu F, Su Y, Liu Y, Wang G, Zhang Y, Yang Y (2014) Ovalbumin–gum Arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration. Colloids Surf B 113:477–482.  https://doi.org/10.1016/j.colsurfb.2013.08.012 CrossRefGoogle Scholar
  31. Othman M, Aschi A, Gharbi A (2016) Polyacrylic acids–bovine serum albumin complexation: structure and dynamics. Mater Sci Eng C 58:316–323.  https://doi.org/10.1016/j.msec.2015.08.057 CrossRefGoogle Scholar
  32. Scharamm G (2000) A practical approach to rheology and rheometry. Gebrueder HAAKEE GMBH, Karlsruhe, Federal Republic of GermanyGoogle Scholar
  33. Singh SS, Siddhanta AK, Bandyopadhyay S, Meena R, Prasad K, Bohidar HB (2007) Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol 41:185–192.  https://doi.org/10.1016/j.ijbiomac.2007.02.004 CrossRefPubMedGoogle Scholar
  34. Sorensen C (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687.  https://doi.org/10.1080/02786820117868 CrossRefGoogle Scholar
  35. St-Gelais B, Champagne CP, Erpmoc F, Audet P (1995) The use of electrical conductivity to follow acidification of dairy blends. Int Dairy J 5:427–438.  https://doi.org/10.1016/0958-6946(95)00027-Z CrossRefGoogle Scholar
  36. Tiebackx FW (1922) Ist die Gelatine-Gummiarabikumflockung ein chemischer oder ein kolloidchemischer Proze. Colloid Polym Sci 31:102–103.  https://doi.org/10.1007/BF01422395 CrossRefGoogle Scholar
  37. Trabelsi S, Aschi A, Othman T, Gharbi A (2014) Complex formation between ovalbumin and strong polyanion PSSNa: study of structure and properties. Mater Sci Eng C 42:295–302.  https://doi.org/10.1016/j.msec.2014.05.042 CrossRefGoogle Scholar
  38. Trabelsi S, Bassalah MA, Aschi A, Othman T, Gharbi A (2016) Study the cooperative motion of long-chain polyelectrolyte in presence of small globular protein. Phys B 503:18–24.  https://doi.org/10.1016/j.physb.2016.09.003 CrossRefGoogle Scholar
  39. Tsouli J, Ville A, Valla H (1976) Controle de la fabrication du fromage Emmenthal par la meéthode conductimétrique. Le Lait 559–560:600–607.  https://doi.org/10.1051/lait:1976559-56031 CrossRefGoogle Scholar
  40. Turgeon S, Schmitt C, Sanchez C (2007) Protein–polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12:166–178.  https://doi.org/10.1016/j.cocis.2007.07.007 CrossRefGoogle Scholar
  41. Weinbreck F, Nieuwenhuijse H, Robijn GW, De Kruif CG (2004) Complexation of whey proteins with carrageenan. J Agric Food Chem 52:3550–3555.  https://doi.org/10.1021/jf034969t CrossRefPubMedGoogle Scholar
  42. Won‐Woo K, Byoungseung Y (2009) Rheological behaviour of acorn starch dispersions: effects of concentration and temperature. Int J Food Sci Technol 44:503–509.  https://doi.org/10.1111/j.1365-2621.2008.01760.x CrossRefGoogle Scholar
  43. Xiao Q, Tong Q, Lim LT (2012) Pullulan-sodium alginate based edible films: rheological properties of film forming solutions. Carbohyd Polym 87:1689–1695.  https://doi.org/10.1016/j.carbpol.2011.09.077 CrossRefGoogle Scholar
  44. Zhuang Y, Zhou W, Nguyen MH, Hourigan JA (1997) Determination of protein content of whey powder using electrical conductivity measurement. Int Dairy J 7:647–653.  https://doi.org/10.1016/S0958-6946(97)00059-9 CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  • Wafa Feddaoui
    • 1
  • Adel Aschi
    • 1
    Email author
  • Houda Bey
    • 1
  • Tahar Othman
    • 1
  1. 1.Faculté Des Sciences de Tunis, LR99ES16 Laboratoire Physique de La Matière Molle Et de La Modélisation ÉlectromagnétiqueUniversité de Tunis El ManarTunisTunisia

Personalised recommendations