Advertisement

European Biophysics Journal

, Volume 48, Issue 8, pp 721–729 | Cite as

Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4)

  • Pablo J. GonçalvesEmail author
  • Fabio C. Bezerra
  • Luciane M. Almeida
  • Lais Alonso
  • Guilherme R. L. Souza
  • Antonio Alonso
  • Sergio C. Zílio
  • Iouri E. Borissevitch
Original Article

Abstract

To infer changes in the photophysical properties of porphyrins due to complexation with albumin, a combination of Z-scan and conventional spectroscopic techniques was employed. We measured the characteristics of excited states of meso-tetrakis(sulfonatophenyl) porphyrin bound to bovine serum albumin and observed that the binding reduces the intersystem crossing quantum yield and increases the internal conversion one. A reverse saturable absorption process was observed in the nanosecond timescale. These results are important for prediction of the efficiency of this complex in medical and optical applications, because associating porphyrins to proteins enables better accumulation in tumors and improves its stability in optical devices, but at the same time, decreases its triplet quantum yield.

Keywords

TSPP4 porphyrin Interaction with albumin Porphyrin photophysical characteristics Z-scan 

Notes

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant nos. 305303/2013-9, 309404/2015-0, 458436/2014-3 and 425124/2018-5), Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG Grant nos. 201410267001776 and 201710267000533) for this research financial support.

References

  1. Andrade SM, Costa SMB (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82:1607–1619PubMedPubMedCentralGoogle Scholar
  2. Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q-H, Loh KP (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553Google Scholar
  3. Barbosa Neto NM, Oliveira SL, Misoguti L, Mendonça CR, Gonçalves PJ, Borissevitch IE, Dinelli LR, Romualdo LL, Batista AA, Zilio SC (2006) Singlet excited state absorption of porphyrin molecules for pico- and femtosecond optical limiting application. J Appl Phys 99:123103Google Scholar
  4. Böcking T, Kilian KA, Reece PJ, Gaus K, Gal M, Gooding JJ (2010) Substrate independent assembly of optical structures guided by biomolecular interactions. ACS Appl Mater Interfaces 2(11):3270–3275PubMedGoogle Scholar
  5. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 1:19–38Google Scholar
  6. Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1996) Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation. J Lumin 69:65–76Google Scholar
  7. Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1997) Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin. Anal Chim Acta 343:281–286Google Scholar
  8. Borissevitch IE, Tominaga TT, Schmitt CC (1998) Photophysical studies on the interaction of two water soluble porphyrins with bowine serum albumin. Effects upon the porphyrin triplet state characteristics. J Photochem Phototobiol A 114:201–207Google Scholar
  9. Borissevitch IE, Rakov N, Maciel GS, de Araujo CB (2000) Changes of porphyrin non-linear absorption induced due to the interaction with bovine serum albumin. Appl Opt 39:4431–4435PubMedGoogle Scholar
  10. Borissevitch IE, Lukashev EP, Oleinikov IP, Pavanelli ALS, Gonçalves PJ, Knox PP (2019) Electrostatic interactions and covalent binding effects on the energy transfer between quantum dots and reaction centers of purple bacteria. J Lumin 207:129–136Google Scholar
  11. Calvete M, Yang GY, Hanack M (2004) Porphyrins and phthalocyanines as materials for optical limiting. Synth Met 141:231–243Google Scholar
  12. Carvalho VCM, Melo CAS, Bagnato VS, Perussi JR (2002) Comparison of the effects of cationic and anionic porphyrins in tumor cells under illumination of Argon ion laser. Laser Phys 12:1314–1319Google Scholar
  13. De Boni L, Franzen PL, Gonçalves PJ, Borissevitch IE, Misoguti L, Mendonça CR, Zilio SC (2011) Pulse train fluorescence technique for measuring triplet state dynamics. Opt Express 19:10813–10823PubMedGoogle Scholar
  14. De Boni L, Monteiro CJP, Mendonça CR, Zílio SC, Gonçalves PJ (2015) Influence of halogen atoms and protonation on the photophysical properties of sulfonated porphyrins. Chem Phys Lett 633:146–151Google Scholar
  15. Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261PubMedGoogle Scholar
  16. Dini D, Calvete MJF, Hanack M (2016) Nonlinear optical materials for the smart filtering of optical radiation. Chem Rev 116:13043–13233PubMedGoogle Scholar
  17. Dubbelman TMAR (1988) Porphyrin–protein interaction. In: Moreno G, Pottier RH, Truscott TG (eds) Photosensitisation. NATO ASI series (Series H: cell biology), vol 15. Springer, BerlinGoogle Scholar
  18. Gómez-Romero P, Sanchez C (eds) (2006) Functional hybrid materials. WILEY-VCH Verlag GmbH&Co.KGaAGoogle Scholar
  19. Gonçalves PJ, Aggarwal LPF, Marquezin CA, Ito AS, De Boni L, Barbosa Neto NM, Rodrigues JJ Jr, Zilio SC, Borissevitch IE (2006) Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin. J Photochem Photobiol A 181:378–384Google Scholar
  20. Gonçalves PJ, Borissevitch IE, Zilio SC (2009) Effect of protonation on the singlet–singlet excited-state absorption of meso-tetrakis(p-sulphonatophenyl) porphyrin. Chem Phys Lett 469:270–273Google Scholar
  21. Gonçalves PJ, Barbosa Neto NM, Parra GG, De Boni L, Aggarwal LPF, Siqueira JP, Misoguti L, Borissevitch IE, Zílio SC (2012) Excited-state dynamics of meso-tetrakis(sulfonatophenyl) porphyrin J-aggregates. Opt Mater 34:741–747Google Scholar
  22. Grebenova D, Cajthamlova H, Holada K, Marinov J, Jirsa M, Hrkal Z (1997) Photodynamic effects of meso-tetra(4-sulfonatophenyl) porphine on human leukemia cells HEL and HL60, human lymphocytes and bone marrow progenitor cells. J Photochem Photobiol B 39:269–278PubMedGoogle Scholar
  23. Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 9:916–966Google Scholar
  24. Kadish KM, Smith KM, Guilard R (2010) Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine. World Scientific, SingaporeGoogle Scholar
  25. Kostyukov AA, Nekipelova TD, Radchenko ASh, Golovina GV, Klimovich ON, Shtil AA, Codognato DCK, Gonçalves PJ, Pavanelli ALS, Ferreira LP, Amado AM, Borisevich YuE, Kuzmin VA (2017) Triplet states of the complexes of biscarbocyanine dye with albumin. High Energy Chem 2:148–150Google Scholar
  26. Kratz F, Beyer U (1998) Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv 5:1–19Google Scholar
  27. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, New YorkGoogle Scholar
  28. Lapes M, Petera J, Jirsa M (1996) Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). J Photochem Photobiol B 36:205–207PubMedGoogle Scholar
  29. LaVan DA, Cha JN (2006) Approaches for biological and biomimetic energy conversion. PNAS 103(14):5251–5255PubMedGoogle Scholar
  30. Lebedeva N, Malkova E, Syrbu S, Gubarev Y, Nikitin D (2013) Investigation of Interactions Between Cationic and Anionic Porphyrins and BSA in Aqueous Media. Int J Biochem Biophys 2(1):13–18Google Scholar
  31. Lehn J-M (1990) Supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem 29:1304–1319Google Scholar
  32. Misoguti L, Mendonca CR, Zilio SC (1999) Characterization of dynamic optical nonlinearities with pulse trains. Appl Phys Lett 74:1531–1537Google Scholar
  33. Molina-Bolívar JA, Ortega-Vinuesa JL (1999) How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15:2644–2653Google Scholar
  34. Morgan WT, Smith A, Koskelo P (1980) The interaction of human serum albumin and hemopexin with porphyrins. BBA Protein Struct 624(1):271–285Google Scholar
  35. Peters T Jr (1996) All about albumin, biochemistry, genetics, and medical applications. Academic Press, New YorkGoogle Scholar
  36. Pucelik B, Paczyński R, Dubin G, Pereira MM, Arnaut LG, Dąbrowski JM (2017) Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS One 13:e0191777Google Scholar
  37. Rinco O, Brenton J, Douglas A, Maxwell A, Henderson M, Indrelie K, Wessels J, Widin J (2009) The effect of porphyrin structure on binding to human serum albumin by fluorescence spectroscopy. J Photochem Photobiol A 208(2–3):91–96Google Scholar
  38. Robinson GW, Frosch RP (1963) Electronic excitation transfer and relaxation. J Chem Phys 38(5):1187–1235Google Scholar
  39. Rodrigues SE, Machado AEH, Berardi M, Ito AS, Almeida LM, Santana MJ, Liao LM, Barbosa Neto NM, Gonçalves PJ (2015) Investigation of protonation effects on the electronic and structural properties of halogenated sulfonated porphyrins. J Mol Struct 1084:284–293Google Scholar
  40. Rozinek SC, Thomas RJ, Brancaleon L (2016) Biophysical characterization of the interaction of human albumin with an anionic porphyrin. Biochem Biophys Rep 7:295–302PubMedPubMedCentralGoogle Scholar
  41. Sortino S (2012) Photoactivated nanomaterials for biomedical release applications. J Mater Chem 2:301–318Google Scholar
  42. Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10:3946–3958PubMedGoogle Scholar
  43. Teles AV, Oliveira TMA, Bezerra FC, Alonso L, Alonso A, Borissevitch IE, Gonçalves PJ, Souza GRL (2018) Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. J Gen Virol 99(9):1301–1306PubMedGoogle Scholar
  44. Thanopulos I, Paspalakis E, Yannopapas V (2008) Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router. Nanotechnology 19:445202PubMedGoogle Scholar
  45. Wendell DW, Patti J, Montemagno CD (2006) Using biological inspiration to engineer functional nanostructured materials. Small 2(11):1324–1329PubMedGoogle Scholar
  46. Zarubaeva VV, Krisko TC, Kriukova EV, Muraviova TD (2017) Effect of albumin on the fluorescence quantum yield of porphyrin -based agents for fluorescent diagnostics. Photodiagn Photodyn Ther 20:137–143Google Scholar
  47. Zhang T, Zhoung Y, Wang Y, Zhang L, Wang H, Wu X (2014) Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly press. Mater Lett 128:227–230Google Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  • Pablo J. Gonçalves
    • 1
    • 2
    Email author
  • Fabio C. Bezerra
    • 1
  • Luciane M. Almeida
    • 3
  • Lais Alonso
    • 1
  • Guilherme R. L. Souza
    • 4
  • Antonio Alonso
    • 1
  • Sergio C. Zílio
    • 1
    • 5
  • Iouri E. Borissevitch
    • 1
    • 6
  1. 1.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Campus Henrique Santillo, Universidade Estadual de GoiásAnápolisBrazil
  4. 4.Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  5. 5.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  6. 6.Departamento de FísicaFFLCRP, Universidade de São PauloRibeirão PretoBrazil

Personalised recommendations