Advertisement

European Biophysics Journal

, Volume 48, Issue 6, pp 503–511 | Cite as

Inhibition of influenza virus activity by the bovine seminal plasma protein PDC-109

  • Robert-William Welke
  • Ivan Haralampiev
  • Filip Schröter
  • Beate C. Braun
  • Andreas Herrmann
  • Christian SiebenEmail author
  • Peter MüllerEmail author
Original Article
  • 72 Downloads

Abstract

A number of viruses causing sexually transmissible diseases are transmitted via mammalian seminal plasma. Several components of seminal plasma have been shown to influence those viruses and their physiological impact. To unravel whether components of seminal plasma could affect viruses transmitted via other pathways, it was investigated here whether the bovine seminal plasma protein PDC-109, belonging to the Fn-type 2 protein family, influences the activity of influenza A viruses, used as a model for enveloped viruses. We found that PDC-109 inhibits the fusion of influenza virus with human erythrocyte membranes and leads to a decreased viral infection in MDCK cells. In the presence of the head group of the phospholipid phosphatidylcholine, phosphorylcholine, the inhibitory effect of PDC-109 was attenuated. This indicates that the impact of the protein is mainly caused by its binding to viral and to erythrocyte membranes thereby interfering with virus-cell binding. Our study underlines that Fn-type 2 proteins have to be considered as new antiviral components present in mammalian seminal plasma.

Keywords

Seminal plasma Influenza virus Fn-type 2 proteins PDC-109 

Notes

Acknowledgements

The work was supported by the German Ministry of Research and Education (BMBF) (e:BioViroSign).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

249_2019_1374_MOESM1_ESM.docx (351 kb)
Supplementary material 1 (DOCX 351 kb)

References

  1. Anbazhagan V, Sankhala RS, Singh BP, Swamy MJ (2011) Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes. PLoS ONE 6:e25993CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bachrach U, Don S (1970) Inactivation of influenza and Newcastle disease viruses by oxidized spermine. Isr J Med Sci 6:435–437PubMedGoogle Scholar
  3. Bedford JM (1983) Significance of the need for sperm capacitation before fertilization in eutherian mammals. Biol Reprod 28:108–120CrossRefPubMedGoogle Scholar
  4. Berri F, Haffar G, Lê VB, Sadewasser A, Paki K, Lina B, Wolff T, Riteau B (2014) Annexin V incorporated into influenza virus particles inhibits gamma interferon signaling and promotes viral replication. J Virol 88:11215–11228CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26:D49–D53CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caballero I, Vazquez JM, Centurión F, Rodríguez-Martinez H, Parrilla I, Roca J, Cuello C, Martinez EA (2004) Comparative effects of autologous and homologous seminal plasma on the viability of largely extended boar spermatozoa. Reprod Domest Anim 39:370–375CrossRefPubMedGoogle Scholar
  7. Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, Vázquez JM (2012) Seminal plasma proteins as modulators of the sperm function and their application in sperm biotechnologies. Reprod Domest Anim 47:12–21CrossRefPubMedGoogle Scholar
  8. Calvete JJ, Sanz L (2007) Insights into structure-function correlations of ungulate seminal plasma proteins. Soc Reprod Fertil Suppl 65:201–215PubMedGoogle Scholar
  9. Calvete JJ, Raida M, Sanz L, Wempe F, Scheit KH, Romero A, Töpfer-Petersen E (1994) Localization and structural characterization of an oligosaccharide O-linked to bovine PDC-109—quantitation of the glycoprotein in seminal plasma and on the surface of ejaculated and capacitated spermatozoa. FEBS Lett 350:203–206CrossRefPubMedGoogle Scholar
  10. Calvete JJ, Varela PF, Sanz L, Romero A, Mann K, Töpfer-Petersen E (1996) A procedure for the large-scale isolation of bovine seminal plasma proteins. Prot Express Purif 8:48–56CrossRefGoogle Scholar
  11. Calvete JJ, Campanero-Rhodes MA, Raida M, Sanz L (1999) Characterisation of the conformational and quaternary structure-dependent heparin-binding region of bovine seminal plasma protein PDC-109. FEBS Lett 444:260–264CrossRefPubMedGoogle Scholar
  12. Carr CM, Chaudhry C, Kim PS (1997) Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci USA 94:14306–14313CrossRefPubMedGoogle Scholar
  13. Christopher-Hennings J, Nelson EA, Althouse GC, Lunney J (2008) Comparative antiviral and proviral factors in semen and vaccines for preventing viral dissemination from the male reproductive tract and semen. Anim Health Res Rev 9:59–69CrossRefPubMedGoogle Scholar
  14. Cross NL (1993) Multiple effects of seminal plasma on the acrosome reaction of human sperm. Molec Reprod Dev 35:316–323CrossRefPubMedGoogle Scholar
  15. Damai RS, Sankhala RS, Anbazhagan V, Swamy MJ (2010) 31P-NMR and AFM studies on the cell and model membranes by the major bovine seminal plasma protein, PDC-109. IUBMB Life 62:841–851CrossRefPubMedGoogle Scholar
  16. Dejucq N, Jégou B (2001) Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 65:208–231CrossRefPubMedPubMedCentralGoogle Scholar
  17. Desnoyers L, Manjunath P (1992) Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid. J Biol Chem 267:10149–10155PubMedGoogle Scholar
  18. Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130CrossRefPubMedGoogle Scholar
  19. Doncel GF, Joseph T, Thurman AR (2011) Role of semen in HIV-1 transmission: inhibitor or facilitator? Am J Reprod Immunol 65:292–301CrossRefPubMedGoogle Scholar
  20. Doncel GF, Anderson S, Zalenskaya I (2014) Role of semen in modulating the female genital tract microenvironment—Implications for HIV transmission. Am J Reprod Immunol 71:564–574CrossRefPubMedGoogle Scholar
  21. Eisfeld AJ, Neumann G, Kawaoka Y (2014) Influenza A virus isolation, culture and identification. Nat Protocols 9:2663–2681CrossRefPubMedGoogle Scholar
  22. Ekhlasi-Hundrieser M, Müller P, Töpfer-Petersen E (2008) Male secretory proteins sperm tools for fertilisation. In: Glander HJ, Paasch U (eds) Biology of male germ cells. Shaker Publisher GmbH, Aachen, pp 173–210Google Scholar
  23. Fan J, Lefebvre J, Manjunath P (2006) Bovine seminal plasma proteins and their relatives: a new expanding superfamily in mammals. Gene 375:63–74CrossRefPubMedGoogle Scholar
  24. Fraser LR, Adeoya-Osiguwa SA, Baxendale RW, Gibbons R (2006) Regulation of mammalian sperm capacitation by endogenous molecules. Front Biosci 11:1636–1645CrossRefPubMedGoogle Scholar
  25. Fung KYC, Glode LM, Green S, Duncan MW (2004) A comprehensive characterization of the peptide and protein constituents of human seminal fluid. Prostate 61:171–181CrossRefPubMedGoogle Scholar
  26. Gasset M, Magdaleno L, Calvete JJ (2000) Biophysical study of the perturbation of model membrane structure caused by seminal plasma protein PDC-109. Arch Biochem Biophys 15:241–247CrossRefGoogle Scholar
  27. Greube A, Müller K, Töpfer-Petersen E, Herrmann A, Müller P (2001) Influence of the bovine seminal plasma protein PDC-109 on the physical state of membrane. Biochemistry 40:8326–8334CrossRefPubMedGoogle Scholar
  28. Ivankin A, Kuzmenko I, Gidalevitz D (2012) Cholesterol mediates membrane curvature during fusion events. Phys Rev Lett 108:238103CrossRefPubMedGoogle Scholar
  29. Ivanova PT, Myers DS, Milne SB, McClaren JL, Thomas PG, Brown HA (2015) Lipid composition of viral envelope of three strains of influenza virus—not all viruses are created equal. ACS infect diseases 1:399–452CrossRefGoogle Scholar
  30. Jones R (1990) Identification and functions of mammalian sperm-egg recognition molecules during fertilization. J Reprod Fert 42:89–105Google Scholar
  31. Korte T, Ludwig K, Huang Q, Rachakonda PS, Herrmann A (2007) Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration. Eur Biophys J 36:327–335CrossRefPubMedGoogle Scholar
  32. Laemmli UK (1940) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  33. Lassiseraye D, Courtemanche L, Bergeron A, Manjunath P, Lafleur M (2008) Binding of bovine seminal plasma protein BSP-A1/-A2 to model membranes: lipid specificity and effect of the temperature. Biochim Biophys Acta 1778:502–513CrossRefPubMedGoogle Scholar
  34. Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U, Hamann A, Böttcher C, Haag R, Hackenberger CPR, Herrmann A (2017) Multivalent peptide–nanoparticle conjugates for influenza-virus inhibition. Ang Chem Int Ed 56:5931–5936CrossRefGoogle Scholar
  35. Le Guillou J, Ropers MH, Gaillard C, David-Briand E, van Leeuwen-Ibarrola J, Desherces S, Schmitt E, Bencharif D, Amirat-Briand L, Anton M, Tainturier D (2016) Sequestration of bovine seminal plasma proteins by different assemblies of phosphatidylcholine: a new technical approach. Colloid Surfaces B 140:523–530CrossRefGoogle Scholar
  36. Ludwig K, Korte T, Herrmann A (1995) Analysis of delay times of hemagglutinin-mediated fusion between influenza virus and cell membranes. Eur Biophys J 24:55–64CrossRefPubMedGoogle Scholar
  37. Manjunath P, Sairam MR (1987) Purification and biochemical characterization of three major acidic proteins (BSP-A1, BSP-A2 and BSP-A3) from bovine seminal plasma. Biochem J 241:685–692CrossRefPubMedPubMedCentralGoogle Scholar
  38. Manjunath P, Bergeron A, Lefebvre J, Fan J (2007) Seminal plasma proteins: functions and interaction with protective agents during semen preservation. Soc Reprod Fertil Suppl 65:217–228PubMedGoogle Scholar
  39. Mann T (1978) Experimental approach to study of semen and male reproductive function. Int J Fertil 23:133–137PubMedGoogle Scholar
  40. Mann T, Lutwak-Mann C (1981) Male reproductive function and the composition of semen. Male reproductive function and semen: themes and trends in physiology, biochemistry, and investigative andrology. Springer, Berlin, pp 1–38CrossRefGoogle Scholar
  41. Mikuz G, Damjanov I (1982) Inflammation of the testis, epididymis, peritesticular membranes, and scrotum. Pathol Annu 17:101–128PubMedGoogle Scholar
  42. Moreau R, Frank PG, Perreault C, Marcel YL, Manjunath P (1999) Seminal plasma choline phospholipid-binding proteins stimulate cellular cholesterol and phospholipid efflux. Biochim Biophys Acta 1438:38–46CrossRefPubMedGoogle Scholar
  43. Müller P, Erlemann KR, Müller K, Calvete JJ, Töpfer-Petersen E, Marienfeld K, Herrmann A (1998) Biophysical characterization of the interaction of bovine seminal plasma protein PDC-109 with phospholipid vesicles. Eur Biophys J 27:33–41CrossRefPubMedGoogle Scholar
  44. Owen DH, Katz DF (2005) A Review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl 26:459–469CrossRefPubMedGoogle Scholar
  45. Pilch B, Mann M (2006) Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol 7:R40CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ramakrishnan M, Anbazhagan V, Pratap TV, Marsh D, Swamy MJ (2001) Membrane insertion and lipid–protein interactions of bovine seminal plasma protein, PDC-109 investigated by spin label electron spin resonance spectroscopy. Biophys J 81:2215–2225CrossRefPubMedPubMedCentralGoogle Scholar
  47. Razinkov VI, Melikyan GB, Epand RM, Epand RF, Cohen FS (1998) Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores. J Gen Physil 112:409–422CrossRefGoogle Scholar
  48. Richard J-P, Leikina E, Langen R, Henne WM, Popova M, Balla T, McMahon HT, Kozlov MM, Chernomordik LV (2011) Intracellular curvature-generating proteins in cell-to-cell fusion. Biochem J 440:185–193CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rodriguez-Martinez H, Ekstedt EW, Ridderstråle Y (1991) Histochemical localization of carbonic anhydrase in the female genitalia of pigs during the oestrous cycle. Acta Anat 140(1):41–47CrossRefPubMedGoogle Scholar
  50. Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ (2011) Seminal plasma proteins: what role do they play? Am J Reprod Immunol 66:11–22CrossRefPubMedGoogle Scholar
  51. Sabatté J, Lenicov FR, Cabrini M et al (2011) The role of semen in sexual transmission of HIV: beyond a carrier for virus particles. Microbes Infect 13(12–13):977–982.  https://doi.org/10.1016/j.micinf.2011.06.005 CrossRefPubMedGoogle Scholar
  52. Scheit KH, Kemme M, Aumüller G, Seitz J, Hagendorff G, Zimmer M (1988) The major protein of bull seminal plasma: biosynthesis and biological function. Biosci Rep 8:589–608CrossRefPubMedGoogle Scholar
  53. Sharma G, Polasa H (1978) Cytogenetic effects of influenza virus infection on male germ cells of mice. Hum Genet 45:179–187CrossRefPubMedGoogle Scholar
  54. Shivaji S, Scheit KH, Bhargava PM (1990) Proteins of seminal plasma. Wiley, New YorkGoogle Scholar
  55. Sieczkarski SB, Whittaker GR (2004) Viral entry. In: Marsh M (ed) Membrane trafficking in viral replication. Springer, Berlin, pp 1–23Google Scholar
  56. Smrt ST, Draney AW, Lorieau JL (2015) The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 290:228–238CrossRefPubMedGoogle Scholar
  57. Stiasny K, Heinz FX (2004) Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus. J Virol 78:8536–8542CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tannert A, Kurz A, Erlemann KR, Müller K, Herrmann A, Schiller J, Töpfer-Petersen E, Manjunath P, Müller P (2007a) The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet. Eur Biophys J 36:461–475CrossRefPubMedGoogle Scholar
  59. Tannert A, Topfer-Petersen E, Herrmann A, Müller K, Müller P (2007b) The lipid composition modulates the influence of the bovine seminal plasma protein PDC-109 on membrane stability. Biochemistry 46:11621–11629CrossRefPubMedGoogle Scholar
  60. Thérien I, Moreau R, Manjunath P (1999) Bovine seminal plasma phospholipid-binding proteins stimulate phospholipid efflux from epididymal sperm. Biol Reprod 61:590–598CrossRefPubMedGoogle Scholar
  61. Thomas CJ, Anbazhagan V, Ramakrishnan M, Sultan N, Surolia I, Swamy MJ (2003) Mechanism of membrane binding by the bovine seminal plasma protein, PDC-109: a surface plasmon resonance study. Biophys J 84:3037–3044CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Institute for BiologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  3. 3.Department of Intracellular ProteolysisMax Delbrück Center for Molecular MedicineBerlinGermany
  4. 4.Department of CrystallographyMax Delbrück Center for Molecular MedicineBerlinGermany
  5. 5.Department of Cardiovascular Surgery, Heart Center BrandenburgBrandenburg Medical School “Theodor-Fontane”BernauGermany
  6. 6.Laboratory for Experimental Biophysics, School of Basic SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations