Advertisement

Application of small-angle neutron diffraction to the localization of general anesthetics in model membranes

  • P. HrubovčákEmail author
  • T. Kondela
  • E. Ermakova
  • N. Kučerka
Original Article
  • 33 Downloads

Abstract

We set out to explore the applicability of small-angle neutron diffraction (SAND) to the localization of biomembrane components by studying the general anesthetic n-decane in a model lipid bilayer system composed of dioleoyl-phosphocholine (DOPC). Samples in the form of planar membrane multilayers were hydrated by varied mixtures of deuterated and protonated water, and examined by the means of SAND. Neutron scattering length density (NSLD) profiles of the system were then reconstructed from the experimental data. We exploited the significantly different neutron scattering properties of hydrogen and deuterium atoms via labeling in addition to water contrast variation. Enhancing the signals from particular components of bilayer system led to a set of characteristic membrane profiles and from their comparison we localized n-decane molecules unequivocally in the bilayer’s hydrocarbon chain region.

Keywords

General anesthetics n-Decane Lipid bilayers Small-angle neutron diffraction Contrast variation 

Notes

Acknowledgements

This work has been supported by the Slovak Scientific Grant Agency Grant VEGA 1/0916/16, and topical themes 04-4-1121-2015/2020 and 04-4-1133-2018/2020 of the Joint Institute for Nuclear Research in Dubna (Russia). We thank the staff of Institute Laue-Langevine, Bruno Demé in particular, for support and help during experimental run at D16 small momentum transfer diffractometer.

References

  1. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Wiley, New York.  https://doi.org/10.1002/9781119998365
  2. Bacon GE, Lowde RD (1948) Secondary extinction and neutron crystallography. Acta Crystallogr A 1(6):303–314.  https://doi.org/10.1107/S0365110X48000831 CrossRefGoogle Scholar
  3. Balgavý P, Devínsky F (1996) Cut-off effects in biological activities of surfactants. Adv Coll Interface Sci 66:23–63.  https://doi.org/10.1016/0001-8686(96)00295-3 CrossRefGoogle Scholar
  4. Cristiglio V, Giroud B, Didier L, Deme B (2015) D16 is back to business: more neutrons, more space, more fun. Neutron News 26(3):22–24.  https://doi.org/10.1080/10448632.2015.1057051 CrossRefGoogle Scholar
  5. Elliott JR, Haydon DA, Hendry BM, Needham D (1985) Inactivation of the sodium current in squid giant axons by hydrocarbons. Biophys J Elsevier 48(4):617–622.  https://doi.org/10.1016/S0006-3495(85)83817-0 CrossRefGoogle Scholar
  6. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580.  https://doi.org/10.1038/nature04394 CrossRefGoogle Scholar
  7. Finean JB, Burge RE (1963) The determination of the fourier transform of the myelin layer from a study of swelling phenomena. J Mol Biol 7:672–682.  https://doi.org/10.1016/S0022-2836(63)80115-1 CrossRefGoogle Scholar
  8. Fitter J, Gutberlet T, Katsaras J (eds) (2006) Neutron scattering in biology techniques and applications. Springer, New YorkGoogle Scholar
  9. Forman SA, Chin VA (2008) General anesthetics and molecular mechanisms of unconsciousness. Int Anesthesiol Clin 46(3):43–53.  https://doi.org/10.1097/AIA.0b013e3181755da5 CrossRefGoogle Scholar
  10. Franks NP, Lieb WR (1978) Where do general anaesthetics act? Nature 274(5669):339–342.  https://doi.org/10.1038/274339a0 CrossRefGoogle Scholar
  11. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bureau Stand A Phys Chem 81A(1):89–96CrossRefGoogle Scholar
  12. Harroun TA, Kučerka N, Nieh MP, Katsaras J (2009) Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter 5(14):2694–2703.  https://doi.org/10.1039/b819799g CrossRefGoogle Scholar
  13. Haydon DA, Hendry BM, Levinson SR, Requena J (1977) Anaesthesia by the n-alkanes. A comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes. BBA Biomembranes 470(1):17–34.  https://doi.org/10.1016/0005-2736(77)90058-X CrossRefGoogle Scholar
  14. Jacobs RE, White SH (1984a) Behavior of hexane dissolved in dimyristoylphosphatidylcholine bilayers: an NMR and calorimetric study. J Am Chem Soc 106(4):915–920.  https://doi.org/10.1002/chin.198510087 CrossRefGoogle Scholar
  15. Jacobs RE, White SH (1984b) ChemInform Abstract: behavior of hexane dissolved in dioleoylphosphatidylcholine bilayers: an nmr and calorimetric study. J Am Chem Soc 106(23):6909–6912.  https://doi.org/10.1002/chin.198510087 CrossRefGoogle Scholar
  16. Katsaras J, Pencer J, Nieh MP, Abraham T, Kučerka N, Haroun TA (2008) Neutron and X-ray scattering from isotropic and aligned membranes. In: Nag K (ed) Structure and dynamics of membranous interfaces. Wiley, Hoboken, NJGoogle Scholar
  17. Klauda JB, Kučerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting x-ray data from lipid bilayers. Biophys J 90(8):2796–2807.  https://doi.org/10.1529/biophysj.105.075697 CrossRefGoogle Scholar
  18. Kondela T, Gallová J, Hauß T, Barnoud J, Marrink SJ, Kučerka N (2017) Alcohol interactions with lipid bilayers. Molecules 22:1–15.  https://doi.org/10.3390/molecules22122078 CrossRefGoogle Scholar
  19. Kučerka N, Uhríková D, Karlovská J, Balgavý P (2002) Štúdium interakcie n-dekánu s fosfatidylcholínovými dvojvrstvami pomocou difrakcie röntgenového žiarenia. Farm. Obzor 71:182–187Google Scholar
  20. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95(September):2356–2367.  https://doi.org/10.1529/biophysj.108.132662 CrossRefGoogle Scholar
  21. Kučerka N, Nieh MP, Pencer J, Sachs JN, Katsaras J (2009) What determines the thickness of a biological membrane. Gen Physiol Biophys 28:117–125.  https://doi.org/10.4149/gpb CrossRefGoogle Scholar
  22. Kučerka N, Harroun T, Katsaras J (2013) Neutron scattering of membranes. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin, HeidelbergGoogle Scholar
  23. Lee AG (2003) Lipid—protein interactions in biological membranes: a structural perspective. Biochimica et Biophysica Acta Biomembranes 1612:1–40.  https://doi.org/10.1016/S0005-2736(03)00056-7 CrossRefGoogle Scholar
  24. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta Biomembranes 1666:62–87.  https://doi.org/10.1016/j.bbamem.2004.05.012 CrossRefGoogle Scholar
  25. Leonard A, Escrive C, Laguerre M, Pebay-Peyroula E, Neri W, Pott T, Katsaras J, Dufourc E (2001) Location of cholesterol in DMPC membranes. A comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17(14):2019–2030CrossRefGoogle Scholar
  26. MacCallum JL, Tieleman DP (2006) Computer simulation of the distribution of hexane in a lipid bilayer: spatially resolved free energy, entropy, and enthalpy profiles. J Am Chem Soc 128(1):125–130.  https://doi.org/10.1021/ja0535099 CrossRefGoogle Scholar
  27. Mihailescu M, Gawrisch K (2006) The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study. Biophys J 90(1):L04–L6.  https://doi.org/10.1529/biophysj.105.071712 CrossRefGoogle Scholar
  28. Mihailescu M et al (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100(6):1455–1462.  https://doi.org/10.1016/j.bpj.2011.01.035 CrossRefGoogle Scholar
  29. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195CrossRefGoogle Scholar
  30. Nagle JF, Wiener MC (1989) Relations for lipid bilayers. Biophys J 55(2):309–313CrossRefGoogle Scholar
  31. Nagle JF, Akabori K, Treece BW, Tristram-Nagle S (2016) Determination of mosaicity in oriented stacks of lipid bilayers. Soft Matter R Soc Chem 12(6):1884–1891.  https://doi.org/10.1039/c5sm02336j CrossRefGoogle Scholar
  32. Nicolson GL (2014) The fluid–mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta Biomembranes. 1838(6):1451–1466.  https://doi.org/10.1016/j.bbamem.2013.10.019 CrossRefGoogle Scholar
  33. Pabst G, Kučerka N, Nieh MP, Katsaras J (2014) Lipid bilayers and model membranes: from basic research to application. CRC Press, Taylor & Francis Group, Boka Raton, FLCrossRefGoogle Scholar
  34. Pan J, Marquardt D, Heberle FA, Kučerka N, Katsaras J (2014) Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: accounting for exchangeable hydrogens’. Biochimica et Biophysica Acta Biomembranes 1838(11):2966–2969.  https://doi.org/10.1016/j.bbamem.2014.08.009 CrossRefGoogle Scholar
  35. Petrenko VI, Klacsová M, Beskrovnyy AI, Uhríková D, Balgavý P (2010) Interaction of long-chain n-alcohols with fluid DOPC bilayers: a neutron diffraction study. Gen Physiol Biophys 29:355–361.  https://doi.org/10.4149/gpb_2010_04_355 CrossRefGoogle Scholar
  36. Schoenborn BP (1976) Neutron scattering for the analysis of membranes. Biochim Biophys Acta 457:41–55CrossRefGoogle Scholar
  37. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News (Taylor & Francis) 3(3):26–37.  https://doi.org/10.1080/10448639208218770 CrossRefGoogle Scholar
  38. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 384:569–572.  https://doi.org/10.1038/42408 CrossRefGoogle Scholar
  39. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(1972):720–731CrossRefGoogle Scholar
  40. Tristram-Nagle SA (2007) Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol Biol 400(6):63–75.  https://doi.org/10.1385/1-59745-519-9:63 CrossRefGoogle Scholar
  41. White SH, King GI, Cain JE (1981) Location of hexane in lipid bilayers determined by neutron diffraction. Nature 290:161–163CrossRefGoogle Scholar
  42. Worcester DL, Franks NP (1976) Structural analysis of hydrated egg lecithin and cholesterol bilayers II. Neutron diffraction. J Mol Biol 100(3):359–378.  https://doi.org/10.1016/S0022-2836(76)80068-X CrossRefGoogle Scholar
  43. Xia YLM, Kučerka N, Li S, Nieh MP (2015) In-situ temperature-controllable shear flow device for neutron scattering measurement—an example of aligned bicellar mixtures. Rev Sci Instr.  https://doi.org/10.1063/1.4908165 Google Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Department of Condensed Matter PhysicsUniversity of P. J. Šafárik in KošiceKošiceSlovakia
  3. 3.Department of Physical Chemistry of Drugs, Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia

Personalised recommendations