Advertisement

European Biophysics Journal

, Volume 48, Issue 4, pp 341–348 | Cite as

Equilibrium partially folded states of B. licheniformis\(\beta \)-lactamase

  • Valeria A. Risso
  • Mario R. ErmácoraEmail author
Original Article
  • 33 Downloads

Abstract

\(\beta \)-Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A \(\beta \)-lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp\(\rightarrow \)Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp\(\rightarrow \)Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.

Keywords

\(\beta \)-Lactamase Protein folding Circular dichroism Protein conformation 

Notes

Acknowledgements

This work was supported by grants from CONICET (PIP-GI 11220130100277CO) and the Universidad Nacional de Quilmes (PP 53/1002).

Supplementary material

249_2019_1361_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1311 KB)

References

  1. Acharya N, Mishra P, Jha SK (2015) Evidence for dry molten globule-like domains in the pH-induced equilibrium folding intermediate of a multidomain protein. J Phys Chem Lett 7:173–179CrossRefGoogle Scholar
  2. Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26:547–558CrossRefGoogle Scholar
  3. Baldwin RL, Frieden C, Rose GD (2010) Dry molten globule intermediates and the mechanism of protein unfolding. Proteins 78:2725–2737CrossRefGoogle Scholar
  4. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3):167–195CrossRefGoogle Scholar
  5. Bychkova V, Semisotnov G, Balobanov V, Finkelstein A (2018) The molten globule concept: 45 years later. Biochemistry (Moscow) 83:S33–S47CrossRefGoogle Scholar
  6. Clerico EM, Ermácora MR (2001) Tryptophan mutants of intestinal fatty acid-binding protein: ultraviolet absorption and circular dichroism studies. Arch Biochem Biophys 395:215–224CrossRefGoogle Scholar
  7. Creighton TE, Pain RH (1980) Unfolding and refolding of Staphylococcus aureus penicillinase by urea-gradient electrophoresis. J Mol Biol 137:431–436CrossRefGoogle Scholar
  8. Escobar WA, Tan AK, Lewis ER, Fink AL (1994) Site-directed mutagenesis of glutamate-166 in beta-lactamase leads to a branched path mechanism. Biochemistry 33:7619–7626CrossRefGoogle Scholar
  9. Ferreyra RG, Burgardt NI, Milikowski D, Melen G, Kornblihtt AR, DellAngelica EC, Santomé JA, Ermácora MR (2006) A yeast sterol carrier protein with fatty-acid and fatty-acyl-CoA binding activity. Arch Biochem Biophys 453:197–206CrossRefGoogle Scholar
  10. Frate M, Lietz E, Santos J, Rossi J, Fink A, Ermácora M (2000) Export and folding of signal-sequenceless Bacillus licheniformis beta-lactamase in Escherichia coli. Eur J Biochem 267:3836–3847CrossRefGoogle Scholar
  11. Gebhard LG, Risso VA, Santos J, Ferreyra RG, Noguera ME, Ermácora MR (2006) Mapping the distribution of conformational information throughout a protein sequence. J Mol Biol 358:280–288CrossRefGoogle Scholar
  12. Goto Y, Fink AL (1989) Conformational states in. beta.-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28:945–952CrossRefGoogle Scholar
  13. Jansson JAT (1965) A direct spectrophotometric assay for penicillin \(\beta \)-lactamase (penicillinase). Biochim Biophys Acta 99:171–172CrossRefGoogle Scholar
  14. Kather I, Jakob RP, Dobbek H, Schmid FX (2008) Increased folding stability of TEM-1 \(\beta \)-lactamase by in vitro selection. J Mol Biol 383:238–251CrossRefGoogle Scholar
  15. Ledent P, Duez C, Vanhove M, Lejeune A, Fonze E, Charlier P, Rhazi-Filali F, Thamm I, Guillaume G, Samyn B, Devreese B, Van Beeumen J, Lamotte-Brasseur J, Frère JM (1997) Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett 413:194–196CrossRefGoogle Scholar
  16. Lella M, Mahalakshmi R (2017) Metamorphic proteins: emergence of dual protein folds from one primary sequence. Biochemistry 56:2971–2984CrossRefGoogle Scholar
  17. Levinthal C (1969) How to fold graciously. In: Debrunner P, Tsibris J, Munck E (eds) Mossbauer spectroscopy in biological systems. Proceedings of a meeting held at Allerton house, Monticello, Illinois. University of Illinois Press, Urbana, Illinois, pp 22–24Google Scholar
  18. Lewis ER, Winterberg KM, Fink AL (1997) A point mutation leads to altered product specificity in beta-lactamase catalysis. Proc Natl Acad Sci USA 94:443–447CrossRefGoogle Scholar
  19. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336340CrossRefGoogle Scholar
  20. Lietz EJ, Truher H, Kahn D, Hokenson MJ, Fink AL (2000) Lysine-73 is involved in the acylation and deacylation of beta-lactamase. Biochemistry 39:4971–4981CrossRefGoogle Scholar
  21. Moews P, Knox J, Dideberg O, Charlier P, Frère J (1990) Beta-lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins 7:156–171CrossRefGoogle Scholar
  22. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) C The art of scientific computing. Cambridge University Press, New YorkGoogle Scholar
  23. Primo ME, Klinke S, Sica MP, Goldbaum FA, Jakoncic J, Poskus E, Ermácora MR (2008) Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2. J Biol Chem 283:4674–4681CrossRefGoogle Scholar
  24. Ptitsyn O (1995) Molten globule and protein folding. In: Advances in protein chemistry, vol 47. Elsevier, Amsterdam, pp 83–229Google Scholar
  25. Ptitsyn O, Pain R, Semisotnov G, Zerovnik E, Razgulyaev O (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24CrossRefGoogle Scholar
  26. Risso VA, Primo ME, Ermácora MR (2009) Re-engineering a beta-lactamase using prototype peptides from a library of local structural motifs. Protein Sci 18:440–449CrossRefGoogle Scholar
  27. Risso VA, Primo ME, Brunet JE, Sotomayor CP, Ermácora MR (2010) Optical studies of single-tryptophan B. licheniformis \(\beta \)-lactamase variants. Biophys Chem 151:111–118CrossRefGoogle Scholar
  28. Risso VA, Acierno JP, Capaldi S, Monaco HL, Ermácora MR (2012) X-ray evidence of a native state with increased compactness populated by tryptophan-less B. licheniformis \(\beta \)-lactamase. Protein Sci 21:964–976CrossRefGoogle Scholar
  29. Robson B, Pain R (1973) Conformation of biological molecules and polymers. In: Bergmann ED, Pullman B (eds) Proceedings of the 5th Jerusalem Symposium. Academic Press, London, pp 161–172Google Scholar
  30. Robson B, Pain R (1976) The mechanism of folding of globular proteins. equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation. Biochem J 155:331–344CrossRefGoogle Scholar
  31. Santoro MM, Bolen D (1992) A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31:4901–4907CrossRefGoogle Scholar
  32. Santos J, Gebhard LG, Risso VA, Ferreyra RG, Rossi JP, Ermácora MR (2004) Folding of an abridged beta-lactamase. Biochemistry 43:1715–1723CrossRefGoogle Scholar
  33. Santos J, Risso VA, Sica MP, Ermácora MR (2007) Effects of serine-to-cysteine mutations on \(\beta \)-lactamase folding. Biophys J 93:1707–1718CrossRefGoogle Scholar
  34. Sarkar D, DasGupta C (1996) Characterization of a molten globule intermediate during GdnHCl-induced unfolding of RTEM beta-lactamase from Escherichia coli. Biochim Biophys Acta 1296:85–94CrossRefGoogle Scholar
  35. Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  36. Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, Galleni M, Matagne A, Dumoulin M (2012) Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein. PLoS One 7:e31253CrossRefGoogle Scholar
  37. Thomas R, Feeney J, Nicholson R, Pain R, Roberts G (1983) Identification by nmr spectroscopy of a stable intermediate structure in the unfolding of staphylococcal \(\beta \)-lactamase. Biochem J 215:525–529CrossRefGoogle Scholar
  38. Tsytlonok M, Itzhaki LS (2013) The hows and whys of protein folding intermediates. Arch Biochem Biophys 531:14–23CrossRefGoogle Scholar
  39. Ureta DB, Craig PO, Gómez GE, Delfino JM (2007) Assessing native and non-native conformational states of a protein by methylene carbene labeling: the case of Bacillus licheniformis beta-lactamase. Biochemistry 46:14567–14577CrossRefGoogle Scholar
  40. Uversky V, Ptitsyn O (1994) “Partly folded” state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry 33:2782–2791CrossRefGoogle Scholar
  41. Uversky VN, Semisotnov GV, Pain RH, Ptitsyn OB (1992) ’All-or-none’ mechanism of the molten globule unfolding. FEBS Lett 314:89–92CrossRefGoogle Scholar
  42. Vandenameele J, Lejeune A, Di Paolo A, Brans A, Frère JM, Schmid FX, Matagne A (2010) Folding of class a \(\beta \)-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways. Biochemistry 49:4264–4275CrossRefGoogle Scholar
  43. Vandevenne M, Filee P, Scarafone N, Cloes B, Gaspard G, Yilmaz N, Dumoulin M, François JM, Frère JM, Galleni M (2007) The Bacillus licheniformis blap \(\beta \)-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci 16:2260–2271CrossRefGoogle Scholar
  44. Vanhove M, Raquet X, Frère JM (1995) Investigation of the folding pathway of the TEM-1 \(\beta \)-lactamase. Proteins: structure. Funct Bioinform 22:110–118CrossRefGoogle Scholar
  45. Vanhove M, Raquet X, Palzkill T, Pain RH, Frère JM (1996) The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 \(\beta \)-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins 25:104–111CrossRefGoogle Scholar
  46. Vanhove M, Guillaume G, Ledent P, Richards JH, Pain RH, Frere JM (1997) Kinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 beta-lactamase. Biochem J 321:413–417CrossRefGoogle Scholar
  47. Vanhove M, Lejeune A, Pain RH (1998) Beta-lactamases as models for protein-folding studies. Cell Mol Life Sci 54:372–377CrossRefGoogle Scholar
  48. Wolynes PG (2005) Energy landscapes and solved protein folding problems. Philos Trans R Soc Lond B Biol Sci 363(1827):453–457CrossRefGoogle Scholar
  49. Zahn R, Axmann S, Rucknagel K, Jaeger E, Laminet A, Pluckthun A (1994) Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. I. GroEL recognizes the signal sequences of beta-lactamase precursor. J Mol Biol 242:150–164CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
  2. 2.Departamento de Quimica Fisica, Facultad de CienciasUniversity of GranadaGranadaSpain
  3. 3.Instituto Multidisciplinario de Biología CelularConicet-CIC-UNLPLa PlataArgentina

Personalised recommendations