European Biophysics Journal

, Volume 48, Issue 3, pp 261–266 | Cite as

Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh

  • Han Yan
  • Daming Zhou
  • Biao Shi
  • Ziyin Zhang
  • Haibing Tian
  • Leyong Yu
  • Yunjiao Wang
  • Xiyun Guan
  • Zuobin WangEmail author
  • Deqiang WangEmail author
Original Article


Solid-state nanopores are considered an attractive basis for single-molecule DNA sequencing. At present, one obstacle to be overcome is the improvement of their temporal resolution, with the DNA molecules remaining in the sensing volume of the nanopore for a long period of time. Here, we used a composite system of a concentration gradient of LiCl in solution and a nanofiber mesh to slow the DNA perforation speed. Compared to different alkali metal solutions with the same concentration, LiCl can extend the dwell time to 20 ms, five times longer than NaCl and KCl. Moreover, as the concentration gradient increases, the dwell time can be tuned from dozens of milliseconds to more than 100 ms. When we introduce a nanofiber mesh layer on top of the pore in the asymmetric solution, the DNA molecules get retarded by 162–185 \(\upmu \)s/nt, which is three orders of magnitude slower than the bare nanopore. At the same time, because the molecule absorption region becomes larger at the pore vicinity, the higher molecule capture rate improves the detection efficiency.


Nanopore Dwell time Salt concentration gradient Nanofiber mesh 



Acknowledgements are made to National Natural Science Foundations of China (NNSFC 61701474, 61471336, 31501084, 51503206), and West Light Foundation of CAS and Chongqing Sci. & Technol. Commission (cstc2017jcyjAX0320) for support of this work.

Supplementary material

249_2019_1350_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1186 KB)


  1. Akahori R, Haga T et al (2014) Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Nanotechnology 25:275501CrossRefGoogle Scholar
  2. Akahori R, Yanagi I et al (2017) Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Sci Rep 7:9073CrossRefGoogle Scholar
  3. Alibakhshi MA, Halman JR et al (2017) Picomolar fingerprinting of nucleic acid nanoparticles using solid-state nanopores. ACS Nano 11:9701–9710CrossRefGoogle Scholar
  4. Branton D, Deamer DW et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153CrossRefGoogle Scholar
  5. Feng J, Liu K et al (2015) Identification of single nucleotides in \(\text{ MoS }_2\) nanopores. Nat Nanotechnol 10:1070–1076CrossRefGoogle Scholar
  6. Fologea D, Uplinger J et al (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737CrossRefGoogle Scholar
  7. Garaj S, Hubbard W et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193CrossRefGoogle Scholar
  8. He Y, Tsutsui M et al (2011) Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5:5509–5518CrossRefGoogle Scholar
  9. He Y, Tsutsui M et al (2013) Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. Biophys J 105:776–782CrossRefGoogle Scholar
  10. Hyun C, Kaur H et al (2017) A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore. Rev Sci Instrum 88:025001CrossRefGoogle Scholar
  11. Iqbal SM, Bashir R (2011) Nanopores: sensing and fundamental biological interactions. In: Hall AR, Dekker C (eds) Molecular detection and force spectroscopy in solid-state nanopores with integrated optical tweezers. Springer, Boston, p 37Google Scholar
  12. Knust S, Kreft D et al (2017) Measuring DNA translocation forces through \(\text{ MoS }_2\) nanopores with optical tweezers. Mater Today Proc 4:S168–S173CrossRefGoogle Scholar
  13. Kowalczyk SW, Grosberg AY et al (2011) Modelling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22:315101CrossRefGoogle Scholar
  14. Kowalczyk SW, Wells DB et al (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044CrossRefGoogle Scholar
  15. Kwok H, Briggs K et al (2014) Nanopore fabrication by controlled dielectric breakdown. PLoS One 9:e92880CrossRefGoogle Scholar
  16. Li J, Gershow M et al (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615CrossRefGoogle Scholar
  17. Liu K, Feng J et al (2014) Automically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8:2504–2511CrossRefGoogle Scholar
  18. Liu Y, Yobas L (2016) Slowing DNA translocation in a nanofluidic field-effect transistor. ACS Nano 10:3985–3994CrossRefGoogle Scholar
  19. Mirsaidov U, Comer J et al (2010) Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. Nanotechnology 21:395501CrossRefGoogle Scholar
  20. Muthukumar M (2010) Theory of capture rate in polymer translocation. J Chem Phys 132:195101CrossRefGoogle Scholar
  21. Nelson EM, Li H et al (2014) Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano 8:5484–5493CrossRefGoogle Scholar
  22. Nova IC, Derrington IM et al (2017) Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA. PLoS One 12:e0181599CrossRefGoogle Scholar
  23. Ross PD, Scruggs RL (1964) Electrophoresis of DNA. III. The effect of several univalent electrolytes on the mobility of DNA. Biopolymers 2:231–236CrossRefGoogle Scholar
  24. Sha J, Shi H et al (2017) Salt gradient improving signal-to-noise ration in solid-state nanopore. ACS Sens 2:506–512CrossRefGoogle Scholar
  25. Squires AH, Hersey JS et al (2013) A nanopore-nanofiber mesh biosensor to control DNA translocation. J Am Chem Soc 135:16304–16307CrossRefGoogle Scholar
  26. Tajmir-Riahi HA, Messaoudi S (1992) The effects of monovalent cations Li\(^+\), Na\(^+\), K\(^+\), \(\text{ NH }_4^+\), Rb\(^+\) and Cs\(^+\) on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation. J Biomol Struct Dyn 10:345–365CrossRefGoogle Scholar
  27. Tang Z, Liang Z et al (2015) Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale 7:13207–13214CrossRefGoogle Scholar
  28. Trepagnier EH, Radenovic A et al (2007) Controlling DNA capture and propagation through artificial nanopores. Nano Lett 7:2824–2830CrossRefGoogle Scholar
  29. Tsutsui M, He Y et al (2012) Transverse electric field dragging of DNA in a nanochannel. Sci Rep 2:394CrossRefGoogle Scholar
  30. Wanunu M, Morrison W et al (2010) Electrostatic focusing of unlabelled DNA in to nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165CrossRefGoogle Scholar
  31. Waugh M, Carlsen A et al (2015) Interfacing solid-state nanopores with gel media to slow DNA translocations. Electrophoresis 36:1759–1767CrossRefGoogle Scholar
  32. Wong CTA, Muthukumar M (2007) Polymer capture by electro-osmotic flow of oppositely charged nanopores. J Chem Phys 126:164903CrossRefGoogle Scholar
  33. Zhang H, Zhao Q et al (2013) Slowing down DNA translocation through solid-state nanopores by pressure. Small 9:4112–4117CrossRefGoogle Scholar
  34. Zhao Y, Xie W et al (2018) Slowing down DNA translocation by a nanofiber meshed layer. J Phys D Appl Phys 51:045402CrossRefGoogle Scholar
  35. Zhou D, Deng Y et al (2016) Rectification of ion current determined by the nanopore geometry: experiments and modelling. Chin Phys Lett 33:108501CrossRefGoogle Scholar
  36. Zoysa RSS, Jayawardhana DA et al (2009) Slowing DNA translocation through nanopores using a solution containing organic salts. J Phys Chem B 113:13332–13336CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Changchun University of Science and TechnologyChangchunChina
  2. 2.Chongqing Key Laboratory of Multi-Scale Manufacturing TechnologyChongqing Institute of Green and Intelligent TechnologyChongqingChina
  3. 3.Department of Chemistry and BiochemistryUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations