Advertisement

NMR model structure of the antimicrobial peptide maximin 3

  • Silvia Benetti
  • Patrick Brendan Timmons
  • Chandralal M. HewageEmail author
Original Article
  • 14 Downloads

Abstract

Maximin 3 is a 27-residue-long cationic antimicrobial peptide found in the skin secretion and brain of the Chinese red-belly toad Bombina maxima. The peptide is of biological interest as it possesses anti-HIV activity, not found in the other maximin peptides, in addition to antimicrobial, antitumor and spermicidal activities. The three-dimensional structure of maximin 3 was obtained in a 50/50% water/2,2,2-trifluoroethanol-d3 mixture using two-dimensional NMR spectroscopy. Maximin 3 was found to adopt an α-helical structure from residue G1 to A22, and a coil structure with a helical propensity in the C-terminal tail. The peptide is amphipathic, showing a clear separation between polar and hydrophobic residues. Interactions with sodium dodecyl sulfate micelles, a widely used bacterial membrane-mimicking environment, were modeled using molecular dynamics simulations. The peptide maintained an α-helical conformation, occasionally displaying a flexibility around residues G9 and G16, which is likely responsible for the peptide’s low haemolytic activity. It is found to preferentially adopt a position parallel to the micellar surface, establishing a number of hydrophobic and electrostatic interactions with it.

Keywords

Antimicrobial peptide maximin NMR AMP modeling 

Notes

Acknowledgements

CH is grateful to John O’Brien and Manuel Ruether at Trinity College Dublin for NMR facilities, University College Dublin for a Research Scholarship to PBT, and ICHEC for access to supercomputer facilities. SB and PBT are joint first authors of this work. The solution structure of maximin 3 was deposited to the PDB at the RSCB with deposition code 6HZ2.

References

  1. Albiol Matanic VC, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389.  https://doi.org/10.1016/j.ijantimicag.2003.07.022 CrossRefGoogle Scholar
  2. Avila EE (2017) Functions of antimicrobial peptides in vertebrates. Curr Protein Pept Sci.  https://doi.org/10.2174/1389203717666160813162629 Google Scholar
  3. Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360.  https://doi.org/10.1016/0022-2364(85)90018-6 Google Scholar
  4. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol 10:980–980.  https://doi.org/10.1038/nsb1203-980 CrossRefGoogle Scholar
  5. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733Google Scholar
  6. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238–250CrossRefGoogle Scholar
  7. Čeřovský V, Buděšínsky M, Hovorka O et al (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem 10:2089–2099.  https://doi.org/10.1002/cbic.200900133 CrossRefGoogle Scholar
  8. da Silva Pereira L, do Nascimento VV, de Fátima Ferreira Ribeiro S, et al (2018) Characterization of Capsicum annuum L. leaf and root antimicrobial peptides: antimicrobial activity against phytopathogenic microorganisms. Acta Physiol Plant 40:107.  https://doi.org/10.1007/s11738-018-2685-9
  9. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  10. Dennison SR, Harris F, Bhatt T et al (2009) The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Biochem 332:43–50.  https://doi.org/10.1007/s11010-009-0172-8 CrossRefGoogle Scholar
  11. Deslouches B, Di YP, Deslouches B et al (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8:46635–46651.  https://doi.org/10.18632/oncotarget.16743 CrossRefGoogle Scholar
  12. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621.  https://doi.org/10.1063/1.470648 CrossRefGoogle Scholar
  13. Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9:127–135.  https://doi.org/10.1023/A:1018698002314 CrossRefGoogle Scholar
  14. Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515.  https://doi.org/10.1080/02713680590968637 CrossRefGoogle Scholar
  15. Güntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471.  https://doi.org/10.1007/s10858-015-9924-9 CrossRefGoogle Scholar
  16. Güntert P, Braun W, Wüthrich K (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 217:517–530.  https://doi.org/10.1016/0022-2836(91)90754-T CrossRefGoogle Scholar
  17. Hsiao Y-W, Hedström M, Losasso V et al (2018) Cooperative modes of action of antimicrobial peptides characterized with atomistic simulations: a study on cecropin B. J Phys Chem B 122:5908–5921.  https://doi.org/10.1021/acs.jpcb.8b01957 CrossRefGoogle Scholar
  18. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38.  https://doi.org/10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  19. Idiong G, Won A, Ruscito A et al (2011) Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. Eur Biophys J 40:1087–1100.  https://doi.org/10.1007/s00249-011-0726-z CrossRefGoogle Scholar
  20. Jakobtorweihen S, Ingram T, Smirnova I (2013) Combination of COSMOmic and molecular dynamics simulations for the calculation of membrane-water partition coefficients. J Comput Chem 34:1332–1340.  https://doi.org/10.1002/jcc.23262 CrossRefGoogle Scholar
  21. John BK, Plant D, Webb P, Hurd RE (1992) Effective combination of gradients and crafted RF pulses for water suppression in biological samples. J Magn Reson 98:200–206.  https://doi.org/10.1016/0022-2364(92)90125-Q Google Scholar
  22. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935.  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  23. Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6.  https://doi.org/10.1016/0006-291X(80)90695-6 CrossRefGoogle Scholar
  24. Kuntz ID, Kosen PA, Craig EC (1991) Amide chemical shifts in many helices in peptides and proteins are periodic. J Am Chem Soc 113:1406–1408.  https://doi.org/10.1021/ja00004a050 CrossRefGoogle Scholar
  25. Lai R, Zheng YT, Shen JH et al (2002) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23:427–435.  https://doi.org/10.1016/S0196-9781(01)00641-6 CrossRefGoogle Scholar
  26. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291.  https://doi.org/10.1107/S0021889892009944 CrossRefGoogle Scholar
  27. Laverty G, Gorman SP, Gilmore BF (2012) Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res Part A 100A:1803–1814.  https://doi.org/10.1002/jbm.a.34132 CrossRefGoogle Scholar
  28. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327.  https://doi.org/10.1093/bioinformatics/btu830 CrossRefGoogle Scholar
  29. Lehmann J, Retz M, Sidhu SS et al (2006) Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 50:141–147.  https://doi.org/10.1016/J.EURURO.2005.12.043 CrossRefGoogle Scholar
  30. Liu R, Liu H, Ma Y et al (2011) There are abundant antimicrobial peptides in brains of two kinds of Bombina Toads. J Proteome Res 10:1806–1815.  https://doi.org/10.1021/pr101285n CrossRefGoogle Scholar
  31. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616.  https://doi.org/10.1021/jp973084f CrossRefGoogle Scholar
  32. MacKerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulation. J Comput Chem 25:1400–1415.  https://doi.org/10.1002/jcc.20065 CrossRefGoogle Scholar
  33. Maróti Gergely G, Kereszt A, Kondorosi É, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374.  https://doi.org/10.1016/j.resmic.2011.02.005 CrossRefGoogle Scholar
  34. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189.  https://doi.org/10.1063/1.467468 CrossRefGoogle Scholar
  35. Montserret R, McLeish MJ, Böckmann A, et al (2000) Involvement of electrostatic interactions in the mechanism of peptide folding induced by sodium dodecyl sulfate binding. Biochemistry.  https://doi.org/10.1021/BI000208X
  36. Mor A (2009) Multifunctional host defense peptides: antiparasitic activities. FEBS J 276:6474–6482.  https://doi.org/10.1111/j.1742-4658.2009.07358.x CrossRefGoogle Scholar
  37. Nouri-Sorkhabi MH, Wright LC, Sullivan DR, Kuchel PW (1996) Quantitative31P nuclear magnetic resonance analysis of the phospholipids of erythrocyte membranes using detergent. Lipids 31:765–770.  https://doi.org/10.1007/BF02522893 CrossRefGoogle Scholar
  38. Pace BT, Lackner AA, Porter E, Pahar B (2017) The role of defensins in HIV pathogenesis. Mediat Inflamm 2017:1–12.  https://doi.org/10.1155/2017/5186904 CrossRefGoogle Scholar
  39. Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 273:251–256.  https://doi.org/10.1098/rspb.2005.3301 CrossRefGoogle Scholar
  40. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802.  https://doi.org/10.1002/jcc.20289 CrossRefGoogle Scholar
  41. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341.  https://doi.org/10.1016/0021-9991(77)90098-5 CrossRefGoogle Scholar
  42. El Samak M, Solyman SM, Hanora A (2018) Antimicrobial activity of bacteria isolated from Red Sea marine invertebrates. Biotechnol Rep.  https://doi.org/10.1016/J.BTRE.2018.E00275 Google Scholar
  43. Sani M-A, Henriques ST, Weber D, Separovic F (2015) Bacteria may cope differently from similar membrane damage caused by the Australian tree frog antimicrobial peptide maculatin 1.1. J Biol Chem 290:19853–19862.  https://doi.org/10.1074/jbc.M115.643262 CrossRefGoogle Scholar
  44. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolym Pept Sci Sect 66:236–248CrossRefGoogle Scholar
  45. Shiraki K, Nishikawa K, Goto Y (1995) Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol 245:180–194.  https://doi.org/10.1006/JMBI.1994.0015 CrossRefGoogle Scholar
  46. Sinha S, Singh A, Medhi B, Sehgal R (2016) Systematic review: insight into antimalarial peptide. Int J Pept Res Ther 22:325–340.  https://doi.org/10.1007/s10989-016-9512-1 CrossRefGoogle Scholar
  47. Son M, Lee Y, Hwang H et al (2013) Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides. ChemMedChem 8:1638–1642.  https://doi.org/10.1002/cmdc.201300264 CrossRefGoogle Scholar
  48. Subasinghage AP, Conlon JM, Hewage CM (2008) Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: identification of a full length helix-turn-helix motif. Biochim Biophys Acta Proteins Proteomics 1784:924–929.  https://doi.org/10.1016/j.bbapap.2008.02.019 CrossRefGoogle Scholar
  49. Subasinghage AP, Conlon JM, Hewage CM (2010) Development of potent anti-infective agents from Silurana tropicalis: conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. Biochim Biophys Acta Proteins Proteom 1804:1020–1028.  https://doi.org/10.1016/J.BBAPAP.2010.01.015 CrossRefGoogle Scholar
  50. Subasinghage AP, O’Flynn D, Conlon JM, Hewage CM (2011) Conformational and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its analogue [E4K]alyteserin-1c. Biochim Biophys Acta Biomembr 1808:1975–1984.  https://doi.org/10.1016/j.bbamem.2011.04.012 CrossRefGoogle Scholar
  51. Suh J-Y, Lee K-H, Chi S-W et al (1996) Unusually stable helical kink in the antimicrobial peptide—a derivative of gaegurin. FEBS Lett 392:309–312.  https://doi.org/10.1016/0014-5793(96)00840-X CrossRefGoogle Scholar
  52. Tanphaichitr N, Srakaew N, Alonzi R et al (2016) Potential use of antimicrobial peptides as vaginal spermicides/microbicides. Pharmaceuticals 9:13.  https://doi.org/10.3390/ph9010013 CrossRefGoogle Scholar
  53. Toke O, Bánóczi Z, Király P et al (2011) A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments. Eur Biophys J 40:447–462.  https://doi.org/10.1007/s00249-010-0657-0 CrossRefGoogle Scholar
  54. Verkleij A, Zwaal RF, Roelofsen B et al (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta Biomembr 323:178–193.  https://doi.org/10.1016/0005-2736(73)90143-0 CrossRefGoogle Scholar
  55. Wagner G, Pardi A, Wuethrich K (1983) Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105:5948–5949.  https://doi.org/10.1021/ja00356a056 CrossRefGoogle Scholar
  56. Wakamatsu K, Takeda A, Tachi T, Matsuzaki K (2002) Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers 64:314–327.  https://doi.org/10.1002/bip.10198 CrossRefGoogle Scholar
  57. Wang T, Zhang J, Shen JH et al (2005) Maximins S, a novel group of antimicrobial peptides from toad Bombina maxima. Biochem Biophys Res Commun 327:945–951.  https://doi.org/10.1016/j.bbrc.2004.12.094 CrossRefGoogle Scholar
  58. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287.  https://doi.org/10.1038/nrmicro1861 CrossRefGoogle Scholar
  59. Wojcik C, Sawicki W, Marianowski P et al (2000) Cyclodextrin enhances spermicidal effects of magainin-2-amide. Contraception 62:99–103.  https://doi.org/10.1016/S0010-7824(00)00143-8 CrossRefGoogle Scholar
  60. Xia X, Cheng L, Zhang S et al (2018) The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie Van Leeuwenhoek 111:5–26.  https://doi.org/10.1007/s10482-017-0929-0 CrossRefGoogle Scholar
  61. Xie J, Zhao Q, Li S et al (2017) Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem Biol Drug Des 90:690–702.  https://doi.org/10.1111/cbdd.12988 CrossRefGoogle Scholar
  62. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296.  https://doi.org/10.1016/S1471-4906(02)02246-9 CrossRefGoogle Scholar
  63. Yang D, Biragyn A, Hoover DM et al (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215.  https://doi.org/10.1146/annurev.immunol.22.012703.104603 CrossRefGoogle Scholar
  64. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55.  https://doi.org/10.1124/pr.55.1.2 CrossRefGoogle Scholar
  65. Yin LM, Edwards MA, Li J et al (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide–membrane interactions. J Biol Chem 287:7738–7745.  https://doi.org/10.1074/jbc.M111.303602 CrossRefGoogle Scholar
  66. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453.  https://doi.org/10.1073/PNAS.84.15.5449 CrossRefGoogle Scholar
  67. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides-Using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta - Biomembr. 1758:1436–1449CrossRefGoogle Scholar
  68. Zhou NE, Zhu BY, Sykes BD, Hodges RS (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic.alpha.-helical peptides. J Am Chem Soc 114:4320–4326.  https://doi.org/10.1021/ja00037a042 CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway InstituteUniversity College DublinDublin 4Ireland
  2. 2.Department of Chemical SciencesUniversità Degli Studi Di PadovaPadovaItaly

Personalised recommendations