Advertisement

Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein–ligand binding reaction measured by isothermal titration calorimetry

  • Vaida Paketurytė
  • Vaida Linkuvienė
  • Georg Krainer
  • Wen-Yih Chen
  • Daumantas Matulis
Original Article

Abstract

In rational drug design, it is important to determine accurately and with high precision the binding constant (the affinity or the change in Gibbs energy, ∆G), the change in enthalpy (ΔH), and the entropy change upon small molecule drug binding to a disease-related target protein. These thermodynamic parameters of the protein–ligand association reaction are usually determined by isothermal titration calorimetry (ITC). Here, the repeatability, precision, and accuracy of the measurement of the affinity and the change in enthalpy upon acetazolamide (AZM) interaction with human carbonic anhydrase II (CA II) are discussed based on the measurements using several ITC instruments. The AZM–CA II reaction was performed at decreasing protein–ligand concentrations until the determination of ∆G and ΔH was not possible, indicating a lower limit for accuracy. To obtain the confidence intervals (CI) of the ∆G and ΔH of AZM binding to CA II, the binding reaction was repeated numerous times at the optimal concentration of 10 µM and 25 °C temperature. The CI (at a confidence level α = 0.95) for ΔH = − 51.2 ± 1.0 kJ/mol and ∆G = − 45.4 ± 0.5 kJ/mol was determined by averaging the results of multiple repeats.

Keywords

Isothermal titration calorimetry Repeatability Precision Accuracy NITPIC software SEDPHAT software 

Notes

Acknowledgements

This research was funded by Grant no. TAP LLT-1/2016 from the Research Council of Lithuania. The authors acknowledge the COST projects CM1406, CM1407, CA15126, and CA15135.

Supplementary material

249_2018_1341_MOESM1_ESM.docx (543 kb)
Supplementary material 1 (DOCX 542 kb)

References

  1. Baranauskienė L, Petrikaitė V, Matulienė J, Matulis D (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci 10:2752–2762CrossRefGoogle Scholar
  2. Boyce SE, Tellinghuisen J, Chodera JD (2015) Avoiding accuracy-limiting pitfalls in the study of protein–ligand interactions with isothermal titration calorimetry. bioRxiv 23796Google Scholar
  3. Brautigam CA, Zhao H, Vargas C, Keller S, Schuck P (2016) Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 11:882–894CrossRefGoogle Scholar
  4. Broecker J, Vargas C, Keller S (2011) Revisiting the optimal c value for isothermal titration calorimetry. Anal Biochem 418:307–309CrossRefGoogle Scholar
  5. Chirico RD et al (2013) Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J Chem Eng Data 58:2699–2716CrossRefGoogle Scholar
  6. Cimmperman P et al (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231CrossRefGoogle Scholar
  7. Demarse NA, Quinn CF, Eggett DL, Russell DJ, Hansen LD (2011) Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal Biochem 417:247–255CrossRefGoogle Scholar
  8. Dudutiene V et al (2014) Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem 57:9435–9446CrossRefGoogle Scholar
  9. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113CrossRefGoogle Scholar
  10. Hansen LD, Fellingham GW, Russell DJ (2011) Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem 409:220–229CrossRefGoogle Scholar
  11. Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84 (11):5066–5073CrossRefGoogle Scholar
  12. Klebe G (2015) Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov 14:95–110CrossRefGoogle Scholar
  13. Krainer G, Keller S (2015) Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76:116–123CrossRefGoogle Scholar
  14. Krainer G, Broecker J, Vargas C, Fanghänel J, Keller S (2012) Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem 84:10715–10722CrossRefGoogle Scholar
  15. Krishnamurthy VM et al (2008) Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein–ligand binding. Chem Rev 108:946–1051CrossRefGoogle Scholar
  16. Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801CrossRefGoogle Scholar
  17. Ladbury JE, Doyle ML (eds) (2004) Biocalorimetry 2: applications of calorimetry in the biological sciences. Wiley, NewYorkGoogle Scholar
  18. Linkuvienė V, Krainer G, Chen W-Y, Matulis D (2016) Isothermal titration calorimetry for drug design: precision of the enthalpy and binding constant measurements and comparison of the instruments. Anal Biochem 515:61–64CrossRefGoogle Scholar
  19. Mizoue LS, Tellinghuisen J (2004) Calorimetric vs van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2 + -crown ether complexation. Biophys Chem 110:15–24CrossRefGoogle Scholar
  20. Morkūnaitė V et al (2015) Intrinsic thermodynamics of sulfonamide inhibitor binding to human carbonic anhydrases I and II. J Enzyme Inhib Med Chem 30:204–211CrossRefGoogle Scholar
  21. Myszka DG et al (2003) The ABRF-MIRG’02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Tech JBT 14:247–269Google Scholar
  22. Navratilova I et al (2007) Thermodynamic benchmark study using Biacore technology. Anal Biochem 364:67–77CrossRefGoogle Scholar
  23. Papalia GA et al (2006) Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. Anal Biochem 359:94–105CrossRefGoogle Scholar
  24. Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res 24:1–52CrossRefGoogle Scholar
  25. Rogez-Florent T et al (2017) Chiral separation of new sulfonamide derivatives and evaluation of their enantioselective affinity for human carbonic anhydrase II by microscale thermophoresis and surface plasmon resonance. J Pharm Biomed Anal 137:113–122CrossRefGoogle Scholar
  26. Tellinghuisen J (2004a) Volume errors in isothermal titration calorimetry. Anal Biochem 333:405–406CrossRefGoogle Scholar
  27. Tellinghuisen J (2004b) Statistical error in isothermal titration calorimetry. Methods Enzymol 383:245–282CrossRefGoogle Scholar
  28. Tellinghuisen J (2005a) Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109:20027–20035CrossRefGoogle Scholar
  29. Tellinghuisen J (2005b) Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal Biochem 343:106–115CrossRefGoogle Scholar
  30. Tellinghuisen J (2007) Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl (aq). Anal Biochem 360:47–55CrossRefGoogle Scholar
  31. Tellinghuisen J (2008a) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397CrossRefGoogle Scholar
  32. Tellinghuisen J (2008b) Stupid Statistics! Methods in Cell Biology 84:737–780CrossRefGoogle Scholar
  33. Tellinghuisen J (2016) Optimizing isothermal titration calorimetry protocols for the study of 1:1 binding: keeping it simple. Biochim Biophys Acta 1860:861–867CrossRefGoogle Scholar
  34. Tellinghuisen J, Chodera JD (2011) Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal Biochem 414:297–299CrossRefGoogle Scholar
  35. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866CrossRefGoogle Scholar
  36. Wadsö I (2000) Needs for standards in isothermal microcalorimetry. Thermochim Acta 347:73–77CrossRefGoogle Scholar
  37. Wadsö I, Wadsö L (2005) Systematic errors in isothermal micro-and nanocalorimetry. J Therm Anal Calorim 82:553–558CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
  2. 2.Molecular BiophysicsTechnische Universität KaiserslauternKaiserslauternGermany
  3. 3.B CUBE – Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
  4. 4.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan CityTaiwan

Personalised recommendations