Advertisement

Probing the effect of a room temperature ionic liquid on phospholipid membranes in multilamellar vesicles

  • S. Mitra
  • D. Ray
  • G. Bhattacharya
  • R. Gupta
  • D. Sen
  • V. K. Aswal
  • S. K. Ghosh
Original Article
  • 85 Downloads

Abstract

The large number of potential applications of ionic liquids (ILs) requires an understanding of their environmental impacts including their adverse effects on microorganisms living in soil and water. The molecular mechanism of toxic activities of these liquids is yet to be understood in detail. Any foreign molecules, interacting with an organism, have to encounter first the cellular membrane, which is predominantly composed of the lipid bilayer. In this work, multilamellar vesicles (MLV) of phospholipids have been used to shed light on the effect of an IL on the structure of a cellular membrane. The MLVs formed by the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are found to shrink as a consequence of interaction with an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM] [BF4]). The absorbed ILs significantly modify the surface charge of the MLVs. While these observations indicate a strong membrane-IL interaction, synchrotron-based small angle X-ray diffraction (SAXD) measurements provide a structural description of the interaction. SAXD and Fourier transform infrared spectroscopy studies clearly reveal a disordering effect of the IL on the conformational organization of the lipid chains. The presence of the negatively charged lipid 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine sodium salt (DPPS) in MLVs plays an important role in disordering the chains in the membrane and inter-bilayer interactions.

Keyword

Ionic liquid Lipid membranes Multilamellar vesicle Small angle X-ray diffraction 

Notes

Acknowledgements

S. Mitra acknowledges the financial assistance of the Department of Science and Technology (DST), India through INSPIRE fellowship. R. Gupta, V. K. Aswal and S. K. Ghosh acknowledge the financial support received from UGC-DAE CSR (Mumbai Centre). We thank Mr. Ashish Kumar Chalana for helping in FTIR experiment. We also thank DST for financial support and Saha Institute of Nuclear Physics (SINP) for facilitating the experiments at the Indian Beamline, Photon Factory, KEK, Japan.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1994) Molecular biology of the cell (Garland, New York, 1994). Google Scholar 907–982Google Scholar
  2. Belosludtsev KN, Belosludtseva NV, Agafonov AV, Penkov NV, Samartsev VN, Lemasters JJ, Mironova GD (2015) Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. Biochimica et Biophysica Acta (BBA)-Biomembranes 1848:2200-2205CrossRefGoogle Scholar
  3. Benecke G, Wagermaier W, Li C, Schwartzkopf M, Flucke G, Hoerth R, Zizak I, Burghammer M, Metwalli E, Müller-Buschbaum P (2014) A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J Appl Crystallogr 47:1797–1803CrossRefGoogle Scholar
  4. Benedetto A (2017) Room-temperature ionic liquids meet bio-membranes: the state-of-the-art. Biophysical reviews 9:309–320CrossRefGoogle Scholar
  5. Benedetto A, Ballone P (2016) Room temperature ionic liquids interacting with bio-molecules: an overview of experimental and computational studies. Phil Mag 96:870–894CrossRefGoogle Scholar
  6. Benedetto A, Ballone P (2018a) An overview of neutron scattering and molecular dynamics simulation studies of phospholipid bilayers in room-temperature ionic liquid/water solutions. Physica B: Condensed Matter.  https://doi.org/10.1016/j.physb.2018.02.043
  7. Benedetto A, Ballone P (2018b) Room-Temperature Ionic Liquids and Biomembranes: setting the Stage for Applications in Pharmacology, Biomedicine, and Bionanotechnology. Langmuir 34:9579–9597CrossRefGoogle Scholar
  8. Benedetto A, Heinrich F, Gonzalez MA, Fragneto G, Watkins E, Ballone P (2014) Structure and stability of phospholipid bilayers hydrated by a room-temperature ionic liquid/water solution: a neutron reflectometry study. J Phys Chem B 118:12192–12206CrossRefGoogle Scholar
  9. Bhattacharya G, Giri R, Saxena H, Agrawal V, Gupta A, Mukhopadhyay M, Ghosh S (2017) X-ray reflectivity study of the interaction of an imidazolium-based ionic liquid with a soft supported lipid membrane. Langmuir 33:1295–1304CrossRefGoogle Scholar
  10. Bhattacharya G, Giri R, Dubey A, Mitra S, Priyadarshni R, Gupta A, Mukhopadhyay M, Ghosh S (2018a) Structural changes in cellular membranes induced by ionic liquids: from model to bacterial membranes. Chem Phys Lipid 215:1–10CrossRefGoogle Scholar
  11. Bhattacharya G, Mitra S, Mandal P, Dutta S, Giri R, Ghosh S (2018b) Thermodynamics of interaction of ionic liquids with lipid monolayer. Biophysical reviews:1-11Google Scholar
  12. Binder H, Zschörnig O (2002) The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipid 115:39–61CrossRefGoogle Scholar
  13. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490CrossRefGoogle Scholar
  14. Braganza LF, Worcester DL (1986) Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry 25:2591–2596CrossRefGoogle Scholar
  15. Bryant SJ, Wood K, Atkin R, Warr GG (2017) Effect of protic ionic liquid nanostructure on phospholipid vesicle formation. Soft Matter 13:1364–1370CrossRefGoogle Scholar
  16. Cameron DG, Casal HL, Mantsch HH (1980) Characterization of the pretransition in 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine by Fourier transform infrared spectroscopy. Biochemistry 19:3665–3672CrossRefGoogle Scholar
  17. Chen L, Yu Z, Quinn PJ (2007) The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768:2873–2881CrossRefGoogle Scholar
  18. Choi S, Ware W Jr, Lauterbach SR, Phillips WM (1991) Infrared spectroscopic studies on the phosphatidylserine bilayer interacting with calcium ion: effect of cholesterol. Biochemistry 30:8563–8568CrossRefGoogle Scholar
  19. Darnell JE, Lodish HF, Baltimore D (1990) Molecular cell biology, vol 2. Scientific American Books, New YorkGoogle Scholar
  20. Drücker P, Rühling A, Grill D, Wang D, Draeger A, Gerke V, Glorius F, Galla H-J (2016) Imidazolium salts mimicking the structure of natural lipids exploit remarkable properties forming lamellar phases and giant vesicles. Langmuir 33:1333–1342CrossRefGoogle Scholar
  21. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189CrossRefGoogle Scholar
  22. Feldmann C, Ruck M (2017) Ionic Liquids-Designer Solvents for the Synthesis of New Compounds and Functional Materials. Zeitschrift für anorganische und allgemeine Chemie 643:2–2CrossRefGoogle Scholar
  23. Gennis RB (2013) Biomembranes: molecular structure and function. Springer Science & Business Media, BerlinGoogle Scholar
  24. Gericke A (2018) Is Calcium Fine-Tuning Phosphoinositide-Mediated Signaling Events Through Clustering? Biophys J 114:2483–2484CrossRefGoogle Scholar
  25. Ghosh SK, Castorph S, Konovalov O, Salditt T, Jahn R, Holt M (2012) Measuring Ca2 + -induced structural changes in lipid monolayers: implications for synaptic vesicle exocytosis. Biophys J 102:1394–1402CrossRefGoogle Scholar
  26. Giri RP, Mukhopadhyay MK, Mitra M, Chakrabarti A, Sanyal MK, Ghosh SK, Bera S, Lurio LB, Ma Y, Sinha SK (2017) Differential adsorption of a membrane skeletal protein, spectrin, in phospholipid membranes. EPL (Europhysics Letters) 118:58002CrossRefGoogle Scholar
  27. Guinier A, Lorrain P, Lorrain DS-M, Gillis J (1964) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Phys Today 17:70CrossRefGoogle Scholar
  28. Hansen RT, Carr DB, Schwartz J (1978) Nickel-catalyzed conjugate addition of organoaluminum acetylides to. alpha., beta.-enones. J Am Chem Soc 100:2244–2245CrossRefGoogle Scholar
  29. Herbette L, Napolitano C, McDaniel R (1984) Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. Biophys J 46:677–685CrossRefGoogle Scholar
  30. Hooghwinkel G, Dankmeijer H (1965) The mechanism of hemolysis by various types of surfactants. Acta physiologica et pharmacologica Neerlandica 13:304–316PubMedGoogle Scholar
  31. Ibsen KN, Ma H, Banerjee A, Tanner EE, Nangia S, Mitragotri S (2018) Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE). ACS Biomaterials Science & Engineering 4:2370–2379CrossRefGoogle Scholar
  32. Isomaa B, Bergman H, Sandberg P (1979) The binding of CTAB, a cationic surfactant, to the rat erythrocyte membrane. Acta pharmacologica et toxicologica 44:36–42CrossRefGoogle Scholar
  33. Jing B, Lan N, Qiu J, Zhu Y (2016) Interaction of ionic liquids with a lipid bilayer: a biophysical study of ionic liquid cytotoxicity. J Phys Chem B 120:2781–2789CrossRefGoogle Scholar
  34. Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf, A 316:278–284CrossRefGoogle Scholar
  35. Kondo T, Tomizawa M (1969) Mechanism of hemolysis by cationic surface-active agents. J Pharm Sci 58:1378–1381CrossRefGoogle Scholar
  36. Kontro I, Svedström K, Duša F, Ahvenainen P, Ruokonen S-K, Witos J, Wiedmer SK (2016) Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering. Chem Phys Lipid 201:59–66CrossRefGoogle Scholar
  37. Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110CrossRefGoogle Scholar
  38. Kumar S, Scheidt HA, Kaur N, Kaur A, Kang TS, Huster D, Mithu VS (2018) Amphiphilic Ionic Liquid-Induced Membrane Permeabilization-Binding Is Not Enough. J Phys Chem B 122:3763–6770Google Scholar
  39. Latała A, Stepnowski P, Nędzi M, Mrozik W (2005) Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat Toxicol 73:91–98CrossRefGoogle Scholar
  40. Leonenko Z, Finot E, Ma H, Dahms T, Cramb D (2004) Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys J 86:3783–3793CrossRefGoogle Scholar
  41. Liu B, Jin N (2016) The applications of ionic liquid as functional material: a review. Curr Org Chem 20:2109–2116CrossRefGoogle Scholar
  42. Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biology direct 9:32CrossRefGoogle Scholar
  43. Lozano P, García-Verdugo E, Piamtongkam R, Karbass N, De Diego T, Burguete MI, Luis SV, Iborra JL (2007) Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Adv Synth Catal 349:1077–1084CrossRefGoogle Scholar
  44. Ma Y, Ghosh SK, DiLena DA, Bera S, Lurio LB, Parikh AN, Sinha SK (2016) Cholesterol partition and condensing effect in phase-separated ternary mixture lipid multilayers. Biophys J 110:1355–1366CrossRefGoogle Scholar
  45. Mantsch H, McElhaney R (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipid 57:213–226CrossRefGoogle Scholar
  46. Morini MA, Sierra MB, Pedroni VI, Alarcon LM, Appignanesi GA, Disalvo EA (2015) Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. Colloids Surf, B 131:54–58CrossRefGoogle Scholar
  47. Mouritsent OG, Jørgensen K (1995) Micro-, nano-and meso-scale heterogeneity of iipid bilayers and its influence on macroscopic membrane properties. Mol Membr Biol 12:15–20CrossRefGoogle Scholar
  48. Nagle JF, Zhang R, Tristram-Nagle S, Sun W, Petrache HI, Suter RM (1996) X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J 70:1419–1431CrossRefGoogle Scholar
  49. Nemethy G, Scheraga HA (1964) Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. J Chem Phys 41:680–689CrossRefGoogle Scholar
  50. Ng KC, Chu L-K (2013) Effects of surfactants on the purple membrane and bacteriorhodopsin: solubilization or aggregation? J Phys Chem B 117:6241–6249CrossRefGoogle Scholar
  51. Nieh MP, Raghunathan V, Glinka CJ, Harroun T, Katsaras J (2005) Structural Phase Behavior of High‐Concentration, Alignable Biomimetic Bicelle Mixtures Macromolecular Symposia, vol 219. Wiley Online Library, pp 135-146Google Scholar
  52. Pabst G, Koschuch R, Pozo-Navas B, Rappolt M, Lohner K, Laggner P (2003) Structural analysis of weakly ordered membrane stacks. J Appl Crystallogr 36:1378–1388CrossRefGoogle Scholar
  53. Papahadjopoulos D, Nir S, Düzgünes N (1990) Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 22:157–179CrossRefGoogle Scholar
  54. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404CrossRefGoogle Scholar
  55. Redkar M, Hassan P, Aswal V, Devarajan P (2007) Onion phases of PEG-8 distearate. J Pharm Sci 96:2436–2445CrossRefGoogle Scholar
  56. Ross S, Silverstein AM (1954) Hemolysis by colloidal electrolytes. J Colloid Sci 9:157–165CrossRefGoogle Scholar
  57. Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F (2017) Membrane order is a key regulator of divalent cation-induced clustering of PI (3, 5) P2 and PI (4, 5) P2. Langmuir 33:12463–12477CrossRefGoogle Scholar
  58. Seydel JK (2002) Function, composition, and organization of membranes. Drug-Membrane Interactions: Analysis, Drug Distribution:Modeling:1–33Google Scholar
  59. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361CrossRefGoogle Scholar
  60. Sharma V, Ghosh S, Mandal P, Yamada T, Shibata K, Mitra S, Mukhopadhyay R (2017) Effects of ionic liquids on the nanoscopic dynamics and phase behaviour of a phosphatidylcholine membrane. Soft Matter 13:8969–8979CrossRefGoogle Scholar
  61. Sheldon R (2001) Catalytic reactions in ionic liquids. Chemical Communications:2399-2407Google Scholar
  62. Singh UK, Dohare N, Mishra P, Singh P, Bohidar HB, Patel R (2015) Effect of pyrrolidinium based ionic liquid on the channel form of gramicidin in lipid vesicles. J Photochem Photobiol, B 149:1–8CrossRefGoogle Scholar
  63. Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R (2007) Synaptotagmin activates membrane fusion through a Ca 2 + -dependent trans interaction with phospholipids. Nat Struct Mol Biol 14:904CrossRefGoogle Scholar
  64. Stolte S, Arning J, Bottin-Weber U, Müller A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767CrossRefGoogle Scholar
  65. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846CrossRefGoogle Scholar
  66. Tsai Y-S, Ma S-M, Nishimura S, Ueda I (1990) Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition. Biochimica et Biophysica Acta (BBA)-Biomembranes 1022:245–250CrossRefGoogle Scholar
  67. Wang D, de Jong DH, Rühling A, Lesch V, Shimizu K, Wulff S, Heuer A, Glorius F, Galla H-J (2016) Imidazolium-based lipid analogues and their interaction with phosphatidylcholine membranes. Langmuir 32:12579–12592CrossRefGoogle Scholar
  68. Wilkes JS (2004) Properties of ionic liquid solvents for catalysis. J Mol Catal A: Chem 214:11–17CrossRefGoogle Scholar
  69. Wróbel A (2008) Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes. Bioelectrochemistry 73:117–122CrossRefGoogle Scholar
  70. Wu G, Majewski J, Ege C, Kjaer K, Weygand MJ, Lee KYC (2005) Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study. Biophys J 89:3159–3173CrossRefGoogle Scholar
  71. Yoo B, Shah JK, Zhu Y, Maginn EJ (2014) Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study. Soft Matter 10:8641–8651CrossRefGoogle Scholar
  72. Yoo B, Zhu Y, Maginn EJ (2016) Molecular mechanism of ionic-liquid-induced membrane disruption: morphological changes to bilayers, multilayers, and vesicles. Langmuir 32:5403–5411CrossRefGoogle Scholar
  73. Yu Z-W, Quinn PJ (1995) Phase stability of phosphatidylcholines in dimethylsulfoxide solutions. Biophys J 69:1456–1463CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Natural SciencesShiv Nadar UniversityDadriIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations