European Biophysics Journal

, Volume 48, Issue 1, pp 1–13 | Cite as

Differential effect of Androctonus australis hector venom components on macrophage KV channels: electrophysiological characterization

  • Dalila Khemili
  • Carmen Valenzuela
  • Fatima Laraba-DjebariEmail author
  • Djelila Hammoudi-Triki
Original Article


Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1–25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.


Aah venom Modulation Macrophage Voltage-gated potassium channels KV1.3 KV1.5 



The authors are grateful to Professor Ana Maria Briones (Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain) for providing help with murine peritoneal macrophage cultures and polarization. We are very grateful to Diego A. Peraza, Dr Alicia de la Cruz and Dr Teresa Gonzalez for technical and scientific assistance in patch-clamp experiments, cell transfection, isolation, culturing, polarization of murine peritoneal macrophages and data analysis.

Dalila Khemili received a scholarship from University of Sciences and Technology Hourari Boumediene, Algiers, Algeria. Ion channels laboratory (leaded by Dr. Carmen Valenzuela) received support from Ministerio de Economía, Industria y Competitividad (MINEICO) of Spain: SAF2013-45800-R, SAF2016-75021-R, CIBERCV CB/11/00222 and the European Regional Development Funds (FEDER).

Author contributions

CV, FLD and DHT designed the study; DK performed experiments, analyzed data and drafted the paper; DK and CV interpreted and discussed the electrophysiological data; CV, FLD and DHT wrote and corrected the article.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

249_2018_1323_MOESM1_ESM.tif (1.9 mb)
Supplemental Fig. 1 Effects of Aah venom on Kir currents in murine peritoneal macrophages. Original Kir current traces recorded in resting (A) and LPS-activated macrophages (B) before and after crude venom perfusion at a final concentration of 0.2 μg/ml. Kir currents were elicited by 500 ms voltage ramp from − 140 to − 40 mV in 10 mV steps at the holding potential of − 80 mV. Current–voltage (IV) relationships obtained by plotting the current magnitude at the end of pulses in the absence (filled circles) or the presence of Aah venom (open circles) in resting (C) and LPS-activated macrophages (D). n = 6 cells/condition (TIFF 1909 kb)


  1. Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2008) Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Exp Toxicol Pathol 60:373–380CrossRefGoogle Scholar
  2. Adi-Bessalem S, Mendil A, Hammoudi-Triki D, Laraba-Djebari F (2012) Lung immunoreactivity and airway inflammation: their assessment after scorpion envenomation. Inflammation 35:501–508CrossRefGoogle Scholar
  3. Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2015) Scorpion venom interactions with the immune system scorpion venoms. Springer, Berlin, pp 87–107Google Scholar
  4. Ait-Lounis A, Laraba-Djebari F (2012) TNF-alpha involvement in insulin resistance induced by experimental scorpion envenomation. PLoS Negl Trop Dis 6:e1740CrossRefGoogle Scholar
  5. Ait-Lounis A, Laraba-Djebari F (2015) TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res 64:929–936CrossRefGoogle Scholar
  6. Bekkari N, Martin-Eauclaire M-F, Laraba-Djebari F (2015) Complement system and immunological mediators: their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Exp Toxicol Pathol 67:389–397CrossRefGoogle Scholar
  7. Bertazzi DT, de Assis-Pandochi AI, Azzolini AECS, Talhaferro VL, Lazzarini M, Arantes EC (2003) Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon 41:501–508CrossRefGoogle Scholar
  8. Bertazzi D, Assis-Pandochi A, Sampaio S, Arantes E (2005) Isolation of a new toxin from Tityus serrulatus scorpion venom with action on the complement system. Febs J 272:5Google Scholar
  9. Borges CM, Silveira MR, Aparecida M, Beker C, Freire-Maia L, Teixeira M (2000) Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat. J Leukoc Biol 67:515–519CrossRefGoogle Scholar
  10. Borges A, Op den Camp HJ, De Sanctis JB (2011) Specific activation of human neutrophils by scorpion venom: a flow cytometry assessment. Toxicol Vitro 25:358–367CrossRefGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  12. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87CrossRefGoogle Scholar
  13. Carrithers MD, Dib-Hajj S, Carrithers LM, Tokmoulina G, Pypaert M, Jonas EA, Waxman SG (2007) Expression of the voltage-gated sodium channel NaV1. 5 in the macrophage late endosome regulates endosomal acidification. J Immunol 178:7822–7832CrossRefGoogle Scholar
  14. Carrithers MD, Chatterjee G, Carrithers LM, Offoha R, Iheagwara U, Rahner C, Graham M, Waxman SG (2009) Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 284:8114–8126CrossRefGoogle Scholar
  15. Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA, Pereira-Crott LS (2015) Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis 21:46CrossRefGoogle Scholar
  16. Chair-Yousfi I, Laraba-Djebari F, Hammoudi-Triki D (2015) Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness. Int Immunopharmacol 25:19–29CrossRefGoogle Scholar
  17. Cordero-Morales JF, Cuello LG, Perozo E (2006a) Voltage-dependent gating at the KcsA selectivity filter. Nat Struct Mol Biol 13:319–322CrossRefGoogle Scholar
  18. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006b) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318CrossRefGoogle Scholar
  19. Cordero-Morales JF, Jogini V, Lewis A, Vásquez V, Cortes DM, Roux B, Perozo E (2007) Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 14:1062–1069CrossRefGoogle Scholar
  20. Corzo G, Espino-Solis GP (2017) Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon 127:56–62CrossRefGoogle Scholar
  21. De-Matos I, Talvani A, Rocha O, Freire-Maia L, Teixeira M (2001) Evidence for a role of mast cells in the lung edema induced by Tityus serrulatus venom in rats. Toxicon 39:863–867CrossRefGoogle Scholar
  22. Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353CrossRefGoogle Scholar
  23. Fukuhara Y, Reis M, Dellalibera-Joviliano R, Cunha F, Donadi E (2003) Increased plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 41:49–55CrossRefGoogle Scholar
  24. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604CrossRefGoogle Scholar
  25. Grissmer S, Cahalan M (1989a) Divalent ion trapping inside potassium channels of human T lymphocytes. J Gen Physiol 93:609–630CrossRefGoogle Scholar
  26. Grissmer S, Cahalan M (1989b) TEA prevents inactivation while blocking open K + channels in human T lymphocytes. Biophys J 55:203–206CrossRefGoogle Scholar
  27. Hadaddezfuli R, Khodadadi A, Assarehzadegan MA, Pipelzadeh MH, Saadi S (2015) Hemiscorpius lepturus venom induces expression and production of interluckin-12 in human monocytes. Toxicon 100:27–31CrossRefGoogle Scholar
  28. Hammoudi-Triki D, Ferquel E, Robbe-Vincent A, Bon C, Choumet V, Laraba-Djebari F (2004) Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Trans R Soc Trop Med Hyg 98:240–250CrossRefGoogle Scholar
  29. Ismail M (1995) The scorpion envenoming syndrome. Toxicon 33:825–858CrossRefGoogle Scholar
  30. Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962CrossRefGoogle Scholar
  31. Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D (2015) Scorpion venoms: pathogenesis and biotherapies scorpion venoms. Springer, Berlin, pp 63–85Google Scholar
  32. Magalhães MM, Pereira MES, Amaral CF, Rezende NA, Campolina D, Bucaretchi F, Gazzinelli RT, Cunha-Melo JR (1999) Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon 37:1155–1164CrossRefGoogle Scholar
  33. Matos IM, Souza DG, Seabra DG, Freire-Maia L, Teixeira MM (1999) Effects of tachykinin NK 1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. Eur J Pharmacol 376:293–300CrossRefGoogle Scholar
  34. Medjadba W, Martin-Eauclaire M-F, Laraba-Djebari F (2016) Involvement of kallikrein-Kinin system on cardiopulmonary alterations and inflammatory response induced by purified Aah I toxin from scorpion venom. Inflammation 39:290–302CrossRefGoogle Scholar
  35. Moreno C, Prieto P, Macías Á, Pimentel-Santillana M, de la Cruz A, Través PG, Boscá L, Valenzuela C (2013) Modulation of voltage-dependent and inward rectifier potassium channels by 15-epi-lipoxin-A4 in activated murine macrophages: implications in innate immunity. J Immunol 191:6136–6146CrossRefGoogle Scholar
  36. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  37. Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier J-M (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378:717–726CrossRefGoogle Scholar
  38. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737CrossRefGoogle Scholar
  39. Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J (1996) Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1. 3 and suppress T cell activation. Mol Pharmacol 50:1672–1679Google Scholar
  40. Oliva C, González V, Naranjo D (2005) Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins. Biophys J 89:1009–1019CrossRefGoogle Scholar
  41. Panyi G, Sheng Z, Deutsch C (1995) C-type inactivation of a voltage-gated K + channel occurs by a cooperative mechanism. Biophys J 69:896–903CrossRefGoogle Scholar
  42. Peraza DA, Mojena M, de la Cruz A, Gonzalez T, Bosca L, Galmarini CM, Valenzuela C (2017) Trabectedin re-educates resting peritoneal macrophages into M1 Subtype. Biophys J 112:405aCrossRefGoogle Scholar
  43. Petricevich VL, Lebrun I (2005) Immunomodulatory effects of the Tityus serrulatus venom on murine macrophage functions in vitro. Med Inflamm 2005:39–49CrossRefGoogle Scholar
  44. Petricevich VL, Reynaud E, Cruz AH, Possani LD (2008) Macrophage activation, phagocytosis and intracellular calcium oscillations induced by scorpion toxins from Tityus serrulatus. Clin Exp Immunol 154:415–423CrossRefGoogle Scholar
  45. Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon Kde C, Faccioli LH, Tytgat J, Arantes EC (2015) Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: evidence of a pro-inflammatory toxin on macrophages. Biochimie 115:8–16CrossRefGoogle Scholar
  46. Ramirez-Bello V, Sevcik C, Peigneur S, Tytgat J, D’Suze G (2014) Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na(+)/Ca(2 +) exchangers. Toxicon 82:61–75CrossRefGoogle Scholar
  47. Raouraoua-Boukari R, Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F (2012) Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. NeuroImmunoModulation 19:103–110CrossRefGoogle Scholar
  48. Saadi S, Assarehzadegan MA, Pipelzadeh MH, Hadaddezfuli R (2015) Induction of IL-12 from human monocytes after stimulation with Androctonus crassicauda scorpion venom. Toxicon 106:117–121CrossRefGoogle Scholar
  49. Saidi H, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2013) Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms. J Venom Anim Toxins Incl Trop Dis 19:8CrossRefGoogle Scholar
  50. Vicente R, Escalada A, Coma M, Fuster G, Sanchez-Tillo E, Lopez-Iglesias C, Soler C, Solsona C, Celada A, Felipe A (2003) Differential voltage-dependent K + channel responses during proliferation and activation in macrophages. J Biol Chem 278:46307–46320CrossRefGoogle Scholar
  51. Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M, Lopez-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K + channel in macrophages. J Biol Chem 281:37675–37685CrossRefGoogle Scholar
  52. Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A (2010) Immunomodulation of voltage-dependent K + channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135:135–147CrossRefGoogle Scholar
  53. Wulff H, Knaus H-G, Pennington M, Chandy KG (2004) K + channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173:776–786CrossRefGoogle Scholar
  54. Zachariae U, Schneider R, Velisetty P, Lange A, Seeliger D, Wacker SJ, Karimi-Nejad Y, Vriend G, Becker S, Pongs O (2008) The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Structure 16:747–754CrossRefGoogle Scholar
  55. Zhao Y, Huang J, Yuan X, Peng B, Liu W, Han S, He X (2015) Toxins targeting the KV1. 3 channel: potential immunomodulators for autoimmune diseases. Toxins 7:1749–1764CrossRefGoogle Scholar
  56. Zoccal KF, da Silva Bitencourt C, Paula-Silva FWG, Sorgi CA, Bordon KdCF, Arantes EC, Faccioli LH (2014) TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One 9:e88174CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Laboratory of Cellular and Molecular Biology, Faculty of Biological SciencesUSTHBAlgiersAlgeria
  2. 2.Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAMMadridSpain
  3. 3.Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV)MadridSpain

Personalised recommendations