Hydration facilitates oxygenation of hemocyanin: perspectives from molecular dynamics simulations

  • Khair Bux
  • Syed Abid Ali
  • Syed Tarique Moin
Original Article


Molecular dynamics simulations were applied to deoxy- and oxy-hemocyanins using newly developed force field parameters for the dicopper site to evaluate their structural and dynamical properties. Data obtained from the simulations provided information of the oxygenation effect on the active site and overall topology of the protein that was analyzed by root-mean-square deviations, b-factors, and dicopper coordination geometries. Domain I of the protein was found to demonstrate higher flexibility with respect to domain II because of the interfacial rotation between domain I and II that was further endorsed by computing correlative domain movements for both forms of the protein. The oxygenation effect on the overall structure of the protein or polypeptide subunit was further explored via gyration radii evaluated for the metal-binding domain and for the whole subunit. The evaluation of hydration dynamics was carried out to understand the water mediated role of amino acid residues of the solvent tunnel facilitating the entry of oxygen molecule to the dicopper site of hemocyanin.


Molecular dynamics simulations Oxygenation Shutter mechanism Solvent tunnel 

Supplementary material

249_2018_1316_MOESM1_ESM.pdf (364 kb)
Supplementary material 1 (pdf 363 KB)


  1. Ali SA, Grossmann JG, Abbasi A, Voelter W (2007) Structural and conformational analysis of scorpion (Buthus sindicus) hemocyanin using low resolution techniques. Protein Pept Lett 14(5):481–488CrossRefPubMedGoogle Scholar
  2. Babu CS, Lim C (2006) Empirical force fields for biologically active divalent metal cations in water. J Phys Chem A 110(2):691–699CrossRefPubMedGoogle Scholar
  3. Bernardi F, Bottoni A, Casadio R, Fariselli P, Rigo A (1996) Ab initio study of the mechanism of the binding of triplet O\(\_2\) to hemocyanin. Inorg Chem 35(18):5207–5212CrossRefGoogle Scholar
  4. Brown JM, Powers L, Kincaid B, Larrabee JA, Spiro TG (1980) Structural studies of the hemocyanin active site. 1. Extended X-ray absorption fine structure (EXAFS) analysis. J Am Chem Soc 102(12):4210–4216CrossRefGoogle Scholar
  5. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N et al (2015) AMBER 2015. University of California, San FranciscoGoogle Scholar
  6. Coates CJ, Nairn J (2013) Hemocyanin-derived phenoloxidase activity: a contributing factor to hyperpigmentation in Nephrops norvegicus. Food Chem 140(1):361–369CrossRefPubMedGoogle Scholar
  7. Coates CJ, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45(1):43–55CrossRefPubMedGoogle Scholar
  8. Cole DJ, Vilseck JZ, Tirado-Rives J, Payne MC, Jorgensen W (2016) Biomolecular force field parameterization via atoms in molecule electron density partitioning. J Chem Theory Comput 12(5):2312–2323CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115(21):9620–9631CrossRefGoogle Scholar
  10. Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25(8):392–397CrossRefPubMedGoogle Scholar
  11. Decker H, Van HKE (2010) Oxygen and the evolution of life. Springer Science and Business Media, BerlinGoogle Scholar
  12. Dolashka P, Voelter W (2013) Antiviral activity of hemocyanins. Invertebr Surviv J 10:120–127Google Scholar
  13. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593CrossRefGoogle Scholar
  14. Fariselli P, Bottoni A, Bernardi F, Casadio R (1999) Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding. Protein Sci 8(07):1546–1550CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491CrossRefPubMedGoogle Scholar
  16. Fox T, Kollman PA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102(41):8070–8079CrossRefGoogle Scholar
  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  18. Glazer L, Tom M, Weil S, Roth Z, Khalaila I, Mittelman B, Sagi A (2013) Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. J Exp Biol 216(10):1898–1904CrossRefPubMedGoogle Scholar
  19. Grossmann JG, Ali SA, Abbasi A, Zaidi ZH, Stoeva S, Voelter W, Hasnain SS (2000) Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. Biophys J 78(2):977–981CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hazes B, Hol WGJ (1992) Comparison of the hemocyanin \(\beta\)-barrel with other Greek key \(\beta\)-barrels: possible importance of the “\(\beta\)-zipper” in protein structure and folding. Proteins Struct Funct Bioinform 12(3):278–298CrossRefGoogle Scholar
  21. Hazes B, Kalk KH, Hol W, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z (1993) Crystal structure of deoxygenated limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: clues for a mechanism for allosteric regulation. Protein Sci 2(4):597–619CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hellmann N, Raithel K, Decker H (2003) A potential role for water in the modulation of oxygen-binding by tarantula hemocyanin. Comp Biochem Physiol A Mol Integr Physiol 136(3):725–734CrossRefPubMedGoogle Scholar
  23. Himmelwright RS, Eickman NC, LuBien CD, Solomon EI, Lerch K (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins. J Am Chem Soc 102(24):7339–7344CrossRefGoogle Scholar
  24. Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) Characterization of dynamics and reactivities of solvated ions by ab initio simulations. J Comput Chem 25(2):211–217CrossRefPubMedGoogle Scholar
  25. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple force fields and development of improved protein backbone rarameters. Proteins Struct Funct Bioinform 65(3):712–725CrossRefGoogle Scholar
  26. Hu Z, Williams RD, Tran D, Spiro TG, Gorun SM (2000) Re-engineering enzyme-model active sites: reversible binding of dioxygen at ambient conditions by a bioinspired copper complex. J Am Chem Soc 122(14):3556–3557CrossRefGoogle Scholar
  27. Hundahl C, Fago A, Weber RE (2003) Effects of water activity on oxygen-binding in high-molecular weight, extracellular invertebrate hemoglobin and hemocyanin. Comp Biochem Physiol Part Biochem Mol Biol 136(1):83–90CrossRefGoogle Scholar
  28. Idakieva K, Meersman F, Gielens C (2012) Reversible heat inactivation of copper sites precedes thermal unfolding of Molluscan (Rapana thomasiana) hemocyanin. Biochemica et Biophysica Acta Proteins Proteom 1824(5):731–738CrossRefGoogle Scholar
  29. Jaenicke E, Pairet B, Hartmann H, Decker H (2012) Crystallization and preliminary analysis of crystals of the 24-meric hemocyanin of the emperor scorpion (Pandinus imperator). PLoS ONE 7(3):e32548CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kang KY, Scheraga AH (2008) An efficient method for calculating atomic charges of peptides and proteins from electronic populations. J Phys Chem B 112(17):5470–5478CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652CrossRefPubMedGoogle Scholar
  32. Kay LE (1998) Protein dynamics from NMR. Nat Struct Biol 76(2):145–152Google Scholar
  33. Kräutler V, Gunsteren WFV, Hünenberger PH (2001) A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22(5):501–508CrossRefGoogle Scholar
  34. Kuhn-Nentwig L, Kopp LS, Nentwig W, Haenni B, Streitberger K, Schürch S, Schaller J (2014) Functional differentiation of spider hemocytes by light and transmission electron microscopy, and MALDI-MS-imaging. Dev Comp Immunol 43(1):59–67CrossRefPubMedGoogle Scholar
  35. Lee AL, Wand AJ (2001) Nuclear magnetic resonance (NMR) spectroscopy for monitoring molecular dynamics in solution. eLS Essent Life Sci. CrossRefGoogle Scholar
  36. Lei K, Li F, Zhang M, Yang H, Luo T, Xu X (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32(7):808–813CrossRefPubMedGoogle Scholar
  37. Lieb B, Gebauer W, Gatsogiannis C, Depoix F, Hellmann N, Harasewych MG, Strong EE, Markl J (2010) Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a 550 kDa polypeptide. Front Zool 7(1):1–13CrossRefGoogle Scholar
  38. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958Google Scholar
  39. Ling J, Nestor LP, Czernuszewicz RS, Spiro TG, Fraczkiewicz R, Sharma KD, Loehr TM, Sanders-Loehr J (1994) Common oxygen binding site in hemocyanins from arthropods and mollusks. Evidence from Raman spectroscopy and normal coordinate analysis. J Am Chem Soc 116(17):7682–7691CrossRefGoogle Scholar
  40. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3):373–380CrossRefPubMedGoogle Scholar
  41. Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WGJ (1994) Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins Struct Funct Bioinform 19(4):302–309CrossRefGoogle Scholar
  42. Magnus KA, Ton-That H, Carpenter JE (1994) Recent structural work on the oxygen transport protein hemocyanin. Chem Rev 94(3):727–735CrossRefGoogle Scholar
  43. Markl J (2013) Evolution of molluscan hemocyanin structures. Biochemica et Biophysica Acta Proteins Proteom 1834(9):1840–1852CrossRefGoogle Scholar
  44. Mera-Adasme R, Sadeghian K, Sundholm D, Ochsenfeld C (2014) Effect of including torsional parameters for histidine–metal interactions in classical force fields for metalloproteins. J Phys Chem B 118(46):13106–13111CrossRefPubMedGoogle Scholar
  45. Moin ST, Hofer TS, Sattar R, Ul-Haq Z (2011) Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. Eur Biophys J 40(6):715–726CrossRefPubMedGoogle Scholar
  46. Naresh KN, Sreekumar A, Rajan S (2015) 43 studies using molecular dynamics reveal mechanism of interaction of hemocyanin with phenolic substrates. J Biomol Struct Dyn 33:29–30CrossRefGoogle Scholar
  47. Naresh K, Sreekumar A, Rajan SS (2015) Structural insights into the interaction between molluscan hemocyanins and phenolic substrates: an in silico study using docking and molecular dynamics. J Mol Graph Model 61:272–280CrossRefPubMedGoogle Scholar
  48. Neutze R (2014) Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Phil Trans R Soc B 369(1647):20130318CrossRefPubMedGoogle Scholar
  49. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93(3):1157–1204CrossRefGoogle Scholar
  50. Panzer D, Beck C, Hahn M, Maul J, Schönhense G, Decker H, Aziz EF (2010) Water influences on the copper active site in hemocyanin. J Phys Chem Lett 1(10):1642–1647CrossRefGoogle Scholar
  51. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefPubMedGoogle Scholar
  52. Pick C, Hagner-Holler S, Burmester T (2008) Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma). 38(11):977–983Google Scholar
  53. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095CrossRefPubMedGoogle Scholar
  54. Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28(1):155–179CrossRefPubMedGoogle Scholar
  55. Saito T, Thiel W (2014) Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin. J Phys Chem B 118(19):5034–5043CrossRefPubMedGoogle Scholar
  56. Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10(6):723–730CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comput Chem 19(4):377–395CrossRefGoogle Scholar
  58. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145CrossRefGoogle Scholar
  59. Skjærven L, Yao X, Scarabelli G, Grant BJ (2014) Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinform 15(1):399–410CrossRefGoogle Scholar
  60. Spinozzi F, Maccioni E, Teixeira CV, Amenitsch H, Favilla R, Goldoni M, Di MP, Salvato B, Mariani P, Beltramini M (2003) Synchrotron SAXS studies on the structural stability of Carcinus aestuarii hemocyanin in solution. Biophys J 85(4):2661–2672CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sterner R, Vogl T, Hinz H, Penz F, Hoff R, Föll R, Decker H (1995) Extreme thermostability of tarantula hemocyanin. FEBB Lett 364(1):9–12CrossRefGoogle Scholar
  62. Takano Y, Koizumi K, Nakamura H (2009) Theoretical studies of the magnetic couplings and the chemical indices of the biomimetic models of oxyhemocyanin and oxytyrosinase. Inorg Chimica Acta 362(12):4578–4584CrossRefGoogle Scholar
  63. Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201(8):1085–1098PubMedGoogle Scholar
  64. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefPubMedGoogle Scholar
  65. Withers PC (1992) Comparative animal physiology. Saunders, PhiladelphiaGoogle Scholar
  66. Yoon J, Fujii S, Solomon EI (2009) Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Proc Natl Acad Sci 106(16):6585–6590CrossRefPubMedGoogle Scholar
  67. Zhang X, Huang C, Qin Q (2004) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antivir Res 61(2):93–99CrossRefPubMedGoogle Scholar
  68. Zhang Y, Yan F, Hu Z, Zhao X, Min S, Du Z, Zhao S, Ye X, Li Y (2009) Hemocyanin from shrimp Litopenaeus vannamei shows hemolytic activity. Fish Shelfish Immunol 27(2):330–335CrossRefGoogle Scholar
  69. Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L (2015) Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev Comp Immunol 49(1):96–102CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan

Personalised recommendations