European Biophysics Journal

, Volume 47, Issue 8, pp 917–924 | Cite as

Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments

  • Oleksii ZdorevskyiEmail author
  • Sergey N. Volkov
Original Article


Single-molecule experiments on DNA unzipping are analyzed on the basis of the mobility of nucleic bases in complementary pairs. Two possible scenarios of DNA double-helix unzipping are proposed and studied, using the atom–atom potential function method. According to the first scenario, the base pairs transit into a ‘preopened’ metastable state and then fully open along the ‘stretch’ pathway. In this case, the DNA unzipping takes place slowly and as an equilibrium process, with the opening energies being similar to the energies obtained in thermodynamic experiments on DNA melting. The second scenario is characterized by higher opening forces. In this case, the DNA base pairs open directly along the ‘stretch’ pathway. It follows from our calculations that, in this scenario, the enthalpy difference between the A\(\cdot \)T and G\(\cdot \)C base pairs is much higher than in the first case. The features of the first unzipping scenario show that it can play a key role during the process of DNA genetic information transfer in vivo. It follows from our study that a peculiarity of the second scenario is that it can be used for the development of faster methods for reading genetic information in vitro.


DNA base pairs Unzipping 



The present work was partially supported by the Program of Fundamental Research of the Division of Physics and Astronomy of the National Academy of Sciences of Ukraine.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bockelmann U, Viasnoff V (2008) Theoretical study of sequence-dependent nanopore unzipping of DNA. Biophys J 94:2716–2724CrossRefGoogle Scholar
  2. Bockelmann U, Essevaz-Roulet B, Heslot F (1998a) DNA strand separation studied by single molecule force measurements. Phys Rev E 58(2):2386–2394CrossRefGoogle Scholar
  3. Bockelmann U, Essevaz-Roulet B, Heslot F (1998b) Molecular stick-slip motion revealed by opening DNA with Piconewton forces. Phys Rev Lett 79(22):4489–4492CrossRefGoogle Scholar
  4. Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82:1537–1553CrossRefGoogle Scholar
  5. Bockelmann U, Thomen P, Heslot F (2004) Dynamics of the DNA duplex formation studied by single molecule force measurements. Biophys J 87:3388–3396CrossRefGoogle Scholar
  6. Bustamante C, Keller D (1995) Scanning force microscopy in biology. Phys Today 48(12):32–38CrossRefGoogle Scholar
  7. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10(3):279–285CrossRefGoogle Scholar
  8. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421:423–427CrossRefGoogle Scholar
  9. Danilowicz C, Coljee VW, Bouzigues C, Lubensky DK, Nelson DR, Prentiss M (2003) DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc Natl Acad Sci USA 100:1694–1699CrossRefGoogle Scholar
  10. Dans PD, Danilane L, Ivani I, Drsata T, Lankas F, Hospital A, Walther J, Pujagut RI, Battistini F, Gelpi JL, Lavery R, Orozco M (2016) Long-timescale dynamics of the Drew–Dickerson dodecamer. Nucl Acids Res 44(9):4052–4066CrossRefGoogle Scholar
  11. Diekmann RE (1989) Definitions and nomenclature of nucleic acid structure parameters. EMBO 8(1):1–4CrossRefGoogle Scholar
  12. Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci USA 94:11935–11940CrossRefGoogle Scholar
  13. Frank-Kamenetskii MD, Prakash S (2014) Fluctuations in the DNA double helix: a critical review. Phys Life Rev 11:153–170CrossRefGoogle Scholar
  14. Giudice E, Vrnai P, Lavery R (2003) Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucl Acids Res 31(5):1434–1443CrossRefGoogle Scholar
  15. Hingerty BE, Ritchie RH, Ferrell TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24:427–439CrossRefGoogle Scholar
  16. Huguet JM, Forns N, Ritort F (2009) Statistical properties of metastable intermediates in DNA unzipping. Phys Rev Lett 103:248106CrossRefGoogle Scholar
  17. Huguet JM, Bizarro CV, Forns N, Smith SB, Bustamante C, Ritort F (2010) Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc Natl Acad Sci USA 107(35):15431–15436CrossRefGoogle Scholar
  18. Jose D, Datta K, Johnson NP, von Hippel PH (2009) Spectroscopic studies of position-specific DNA ‘breathing’ fluctuations at replication forks and primer-template junctions. PNAS 106(11):4231–4236CrossRefGoogle Scholar
  19. Kryachko ES, Volkov SN (2001) Preopening of the DNA base pairs. Int J Quantum Chem 82(4):193–204CrossRefGoogle Scholar
  20. Lavery R, Lebrun A, Allemand J-F, Bensimon D, Croquette V (2002) Structure and mechanics of single biomolecules: experiment and simulation. J Phys Condens Matter 14:383–414CrossRefGoogle Scholar
  21. Lubensky DK, Nelson DR (2000) Pulling pinned polymers and unzipping DNA. Phys Rev Lett 85:1572CrossRefGoogle Scholar
  22. Lubensky DK, Nelson DR (2002) Single molecule statistics and the polynucleotide unzipping transition. Phys Rev E 65:031917CrossRefGoogle Scholar
  23. Lukashin AV, Vologodskii AV, Frank-Kamenetskii MD, Lyubchenko YL (1976) Fluctuational opening of the double helix as revealed by theoretical and experimental study of DNA interaction with formaldehyde. J Mol Biol 108:665–682CrossRefGoogle Scholar
  24. Manghi M, Destainville N (2016) Physics of base-pairing dynamics in DNA. Phys Rep 631:141CrossRefGoogle Scholar
  25. Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43:3537–3554CrossRefGoogle Scholar
  26. Poltev VI, Shulyupina NV (1986) Simulation of interactions between nucleic acid bases by refined atom–atom potential functions. J Biomol Struct Dyn 3(4):739–765CrossRefGoogle Scholar
  27. Saenger W (1984) Principles of nucleic acids structure. Springer, BerlinCrossRefGoogle Scholar
  28. Simmons RM, Finer JT, Chu S, Spudich JA (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822CrossRefGoogle Scholar
  29. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126CrossRefGoogle Scholar
  30. Thomen Ph, Bockelmann U, Heslot F (2002) Rotational drag on DNA: a single molecule experiment. Phys Rev Lett 88(24):248102CrossRefGoogle Scholar
  31. Volkov SN (1995) Pre-opened state of the DNA duplex. Mol Biol 29(5):1086–1094Google Scholar
  32. Volkov SN, Kosevich AM (1987) About the conformational vibrations of DNA. Mol Biol 21:797–806Google Scholar
  33. Volkov SN, Kosevich AM (1991) Theory of low-frequency vibrations in DNA macromolecules. J Biomol Struct Dyn 8:1069–1083CrossRefGoogle Scholar
  34. Volkov SN, Solovyov AV (2009) The mechanism of DNA mechanical unzipping. Eur Phys J D 54:657–666CrossRefGoogle Scholar
  35. Volkov SN, Kosevich AM, Weinreb GE (1989) Theoretical study of the low-frequency vibrations of DNA macromolecule. Biopolym Cell 5:32–39CrossRefGoogle Scholar
  36. Voulgarakis NK, Redondo A, Bishop AR, Rasmussen K (2006) Probing the mechanical unzipping of DNA. Phys Rev Lett 96:248101CrossRefGoogle Scholar
  37. Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys Rep 126(2):67–107CrossRefGoogle Scholar
  38. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucl Acids Res 34(2):564–574CrossRefGoogle Scholar
  39. Zefirov UV, Zorkyi PM (1974) Van der Waals radii of atoms in crystal chemistry and structure chemistry. Zh Strukt Khimii 15:118–122Google Scholar
  40. Zhurkin VB, Poltev VI, Florent’ev VL (1980) Atom-atom potential functions for conformational calculations of nucleic acids. Mol Biol (USSR) 14:1116–1130Google Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsKievUkraine

Personalised recommendations