European Biophysics Journal

, Volume 47, Issue 4, pp 395–401 | Cite as

Studies on Manfred Eigen's model for the self-organization of information processing

  • W. Ebeling
  • R. FeistelEmail author
Original Article


In 1971, Manfred Eigen extended the principles of Darwinian evolution to chemical processes, from catalytic networks to the emergence of information processing at the molecular level, leading to the emergence of life. In this paper, we investigate some very general characteristics of this scenario, such as the valuation process of phenotypic traits in a high-dimensional fitness landscape, the effect of spatial compartmentation on the valuation, and the self-organized transition from structural to symbolic genetic information of replicating chain molecules. In the first part, we perform an analysis of typical dynamical properties of continuous dynamical models of evolutionary processes. In particular, we study the mapping of genotype to continuous phenotype spaces following the ideas of Wright and Conrad. We investigate typical features of a Schrödinger-like dynamics, the consequences of the high dimensionality, the leading role of saddle points, and Conrad’s extra-dimensional bypass. In the last part, we discuss in brief the valuation of compartment models and the self-organized emergence of molecular symbols at the beginning of life.


Self organization Phenotype space Schrödinger dynamics Information processing Evolution of life 


  1. Conrad M (1990) The geometry of evolution. BioSystems 24:61–81CrossRefPubMedGoogle Scholar
  2. Conrad M, Ebeling W (1992) Michael Volkenstein, evolutionary thinking and the structure of fitness landscapes. BioSystems 27:125–128CrossRefPubMedGoogle Scholar
  3. Domingo E, Schuster P (eds) (2014) Current topics in microbiology and immunology; quasispecies: from theory to experimental systems, vol 392. Springer, BerlinGoogle Scholar
  4. Dunkel J, Ebeling W, Schimansky-Geier L, Hänggi P (2003) Kramers problem in evolutionary strategies. Phys Rev E 67(6):061118CrossRefGoogle Scholar
  5. Dunkel J, Schimansky-Geier L, Ebeling W (2004) Exact solutions for evolutionary strategies on harmonic landscapes. Evol Comput 12(1):1–17CrossRefPubMedGoogle Scholar
  6. Ebeling W, Feistel R (1979) On the Evolution of Biological Macromolecules. I. Physico-chemical self-organization. Stud Biophys 75:131–146Google Scholar
  7. Ebeling W, Feistel R (1982) Physik der Selbstorganisation und Evolution. Akademie, BerlinGoogle Scholar
  8. Ebeling W, Feistel R (2015) Selforganization of symbols and information. In: Nicolis G, Basios V (eds) Chaos, information processing and paradoxical games. The Legacy of John S. Nicolis. World Scientific Publishing, Singapore, pp 141–184CrossRefGoogle Scholar
  9. Ebeling W, Engel A, Esser B, Feistel R (1984) Diffusion and reaction in random media and models of evolution processes. J Stat Phys 37(3/4):369–384CrossRefGoogle Scholar
  10. Ebeling W, Engel A, Feistel R (1990) Physik der Evolutionsprozesse. Akademie, BerlinGoogle Scholar
  11. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465523CrossRefGoogle Scholar
  12. Eigen M (1976) Wie entsteht Information? Prinzipien der Selbstorganisation in der Biologie. Berichte der Bunsengesellschaft fr physikalische Chemie 80:1059–1081CrossRefGoogle Scholar
  13. Eigen M (1981) Zeugen der Genesis. Universität Jena, Ernst-Haeckel-VorlesungGoogle Scholar
  14. Eigen M (1992) Stufen zum Leben. Piper MnchenGoogle Scholar
  15. Eigen M (1994) The origin of genetic information. Orig Life Evol Biosph 24:241–262Google Scholar
  16. Eigen M (2013) From strange simplicity to complex familiarity. University Press, OxfordCrossRefGoogle Scholar
  17. Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64(11):541565CrossRefGoogle Scholar
  18. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, New YorkCrossRefGoogle Scholar
  19. Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244(4):88–92, 96Google Scholar
  20. Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress A, von Haeseler A (1989) How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 244:673–679CrossRefPubMedGoogle Scholar
  21. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  22. Feistel R (1983) On the evolution of biological macromolecules. IV. Holobiotic competition. Stud Biophys 93:121–128Google Scholar
  23. Feistel R (2017) Self-organisation of symbolic information. Eur Phys J Spec Top 226:207228CrossRefGoogle Scholar
  24. Feistel R, Ebeling W (1982) Models of Darwinian processes and evolutionary principles. BioSystems 15:291–299CrossRefPubMedGoogle Scholar
  25. Feistel R, Ebeling W (1984) Stochastic models of evolutionary processes. In: Lamprecht I, Zotin AI (eds) Thermodynamics and regulation of biological processes. Walter de Gruyter, BerlinGoogle Scholar
  26. Feistel R, Ebeling W (1989) Evolution of complex systems: selforganisation, entropy and development. Kluwer Publication, DordrechtGoogle Scholar
  27. Feistel R, Ebeling W (2011) Physics of selforganization and evolution. Wiley, WeinheimCrossRefGoogle Scholar
  28. Feistel R, Ebeling W (2016) Entropy and the self-organization of information and value. Entropy 18:193CrossRefGoogle Scholar
  29. Feistel R, Romanovsky YuM, Vasiliev VA (1980) Evolution of Eigen’s Hypercycles Existing in Coacervates (in Russ.). Biofizika 25:882–887Google Scholar
  30. Haken H (1988) Information and selforganization. Springer, BerlinGoogle Scholar
  31. Haken H, Haken-Krell M (1988) Information and selforganization. A macroscopic approach to complex systems. Springer, BerlinGoogle Scholar
  32. Haken H, Portugali J (2015) Information adaptation: the interplay between shannon information and semantic information in cognition. Springer, BerlinGoogle Scholar
  33. Kimura M (1983) The Neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S (2012) Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet 8(3):e1002551CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lorenz K (1963) Das sogenannte Böse. Borotha-Schoeler, WienGoogle Scholar
  36. May R (1973) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  37. Romanovsky Yu M, Stepanova MV, Chernavsky DS (2004) Mathematical modelling in biophysics, Russ. Nauka, Moscow. Revised Engl. ed. Moscow-IshevskGoogle Scholar
  38. Sonntag I, Feistel R, Ebeling W (1981) Random networks of catalytic biochemical reactions. Biom J 23:501–515CrossRefGoogle Scholar
  39. Tembrock G (1977) Grundlagen des Tierverhaltens. Akademie, BerlinGoogle Scholar
  40. Volkenstein MV (2009) Entropy and information, Birkhäuser BaselGoogle Scholar
  41. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97159Google Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Institute of PhysicsHumboldt University BerlinBerlinGermany
  2. 2.Leibniz Institute for Baltic ResearchRostockGermany

Personalised recommendations