European Biophysics Journal

, Volume 47, Issue 4, pp 443–457 | Cite as

Quasispecies and virus

  • Esteban DomingoEmail author
  • Celia Perales
Original Article


Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.


Biological diversity Mutant spectrum Error-prone replication RNA genetics Lethal mutagenesis 



We are indebted to many colleagues and students that in our group have contributed to establish links between quasispecies theory and experimental virology. Work in Madrid was supported by Grants [BFU2011-23604, SAF2014-52400-R, SAF2017-87846-R, S2013/ABI-2906 (PLATESA from Comunidad de Madrid/FEDER)] and Fundación R. Areces, and Banco Santander. C.P. is supported by the Miguel Servet program of the Instituto de Salud Carlos III (CP14/00121) cofinanced by the European Regional Development Fund (ERDF).


  1. Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC (2006) Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236–238PubMedCrossRefGoogle Scholar
  2. Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Perez-Luque R, Verdaguer N, Domingo E (2010) A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 6:e1001072PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agudo R, de la Higuera I, Arias A, Grande-Perez A, Domingo E (2016) Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology 494:257–266PubMedCrossRefGoogle Scholar
  4. Altan-Bonnet N, Chen YH (2015) Intercellular transmission of viral populations with vesicles. J Virol 89:12242–12244PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arias A, Lázaro E, Escarmís C, Domingo E (2001) Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82:1049–1060PubMedCrossRefGoogle Scholar
  6. Arias A, Ruiz-Jarabo CM, Escarmis C, Domingo E (2004) Fitness increase of memory genomes in a viral quasispecies. J Mol Biol 339:405–412PubMedCrossRefGoogle Scholar
  7. Arias A, Thorne L, Goodfellow I (2014) Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 3:e03679PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA (2013) T-705 (Favipiravir) Induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 87:3741–3751PubMedPubMedCentralCrossRefGoogle Scholar
  9. Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1:27–32PubMedCrossRefGoogle Scholar
  10. Bertels F, Gokhale CS, Traulsen A (2017) Discovering complete quasispecies in bacterial genomes. Genetics 206:2149–2157PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biebricher CK (2008) Mutation, competition, and selection as measured with small RNA molecules. In: Domingo E, Parrish CR, Holland JJ (eds) Origin and evolution of viruses, 2nd edn. Elsevier, Oxford, pp 65–86CrossRefGoogle Scholar
  12. Boerlijst MC, Boenhoefer S, Nowak MA (1996) Viral quasispecies and recombination. Proc R Soc Lond B 263:1577–1584CrossRefGoogle Scholar
  13. Borderia AV, Rozen-Gagnon K, Vignuzzi M (2016) Fidelity variants and RNA quasispecies. Curr Top Microbiol Immunol 392:303–322PubMedGoogle Scholar
  14. Borrego B, Novella IS, Giralt E, Andreu D, Domingo E (1993) Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J Virol 67:6071–6079PubMedPubMedCentralGoogle Scholar
  15. Bosch A, Mueller S, Pintó RM (2010) Codon biases and viral fitness. In: Ehrenfeld E, Domingo E, Roos RP (eds) The picornaviruses. ASM Press, Washington, DC, pp 271–283CrossRefGoogle Scholar
  16. Briones C, Domingo E (2008) Minority report: hidden memory genomes in HIV-1 quasispecies and possible clinical implications. AIDS Rev 10:93–109PubMedGoogle Scholar
  17. Bull JJ, Meyers LA, Lachmann M (2005) Quasispecies made simple. PLoS Comput Biol 1:e61PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80:3259–3272PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, Brantner CA, Stempinski ES, Connelly PS, Ma HC, Jiang P, Wimmer E, Altan-Bonnet G, Altan-Bonnet N (2015) Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160:619–630PubMedCrossRefGoogle Scholar
  20. Cheng BY, Nogales A, de la Torre JC, Martinez-Sobrido L (2017) Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology 501:35–46PubMedCrossRefGoogle Scholar
  21. Chohan B, Lavreys L, Rainwater SM, Overbaugh J (2005) Evidence for frequent reinfection with human immunodeficiency virus type 1 of a different subtype. J Virol 79:10701–10708PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chumakov KM, Powers LB, Noonan KE, Roninson IB, Levenbook IS (1991) Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc Natl Acad Sci USA 88:199–203PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ciota AT, Ehrbar DJ, Van Slyke GA, Willsey GG, Kramer LD (2012) Cooperative interactions in the West Nile virus mutant swarm. BMC Evol Biol 12:58PubMedPubMedCentralCrossRefGoogle Scholar
  25. Clarke DK, Duarte EA, Elena SF, Moya A, Domingo E, Holland J (1994) The red queen reigns in the kingdom of RNA viruses. Proc Natl Acad Sci USA 91:4821–4824PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787PubMedPubMedCentralCrossRefGoogle Scholar
  27. Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6:1375–1379PubMedCrossRefGoogle Scholar
  28. Crowder S, Kirkegaard K (2005) Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat Genet 37:701–709PubMedCrossRefGoogle Scholar
  29. Dapp MJ, Heineman RH, Mansky LM (2013) Interrelationship between HIV-1 fitness and mutation rate. J Mol Biol 425:41–53PubMedCrossRefGoogle Scholar
  30. de Almeida SM, Rotta I, Ribeiro CE, Oliveira MF, Chaillon A, de Pereira AP, Cunha AP, Zonta M, Bents JF, Raboni SM, Smith D, Letendre S, Ellis RJ (2017) Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J Neurovirol 23:460–473PubMedCrossRefPubMedCentralGoogle Scholar
  31. de la Higuera I, Ferrer-Orta C, de Avila AI, Perales C, Sierra M, Singh K, Sarafianos SG, Dehouck Y, Bastolla U, Verdaguer N, Domingo E (2017) Molecular and functional bases of selection against a mutation bias in an RNA virus. Genome Biol Evol 9:1212–1228PubMedPubMedCentralCrossRefGoogle Scholar
  32. de la Torre JC, Holland JJ (1990) RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64:6278–6281PubMedPubMedCentralGoogle Scholar
  33. Del Portillo A, Tripodi J, Najfeld V, Wodarz D, Levy DN, Chen BK (2011) Multiploid inheritance of HIV-1 during cell-to-cell infection. J Virol 85:7169–7176PubMedPubMedCentralCrossRefGoogle Scholar
  34. Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK (2016) Minimal contribution of APOBEC3-induced G-to-A hypermutation to HIV-1 recombination and genetic variation. PLoS Pathog 12:e1005646PubMedPubMedCentralCrossRefGoogle Scholar
  35. Domingo E (2016) Virus as populations. Academic Press, Elsevier, AmsterdamGoogle Scholar
  36. Domingo E, Schuster P (2016a) Quasispecies: from theory to experimental systems, vol 392. Springer, SwitzerlandCrossRefGoogle Scholar
  37. Domingo E, Schuster P (2016b) What is a quasispecies? Historical origins and current scope. Curr Top Microbiol Immunol 392:1–22PubMedGoogle Scholar
  38. Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744PubMedCrossRefGoogle Scholar
  39. Domingo E, Holland JJ, Ahlquist P (1988) RNA genetics, vol I, II, III. CRC Press, Boca RatonGoogle Scholar
  40. Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216PubMedPubMedCentralCrossRefGoogle Scholar
  41. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913PubMedPubMedCentralCrossRefGoogle Scholar
  42. Duarte EA, Novella IS, Ledesma S, Clarke DK, Moya A, Elena SF, Domingo E, Holland JJ (1994) Subclonal components of consensus fitness in an RNA virus clone. J Virol 68:4295–4301PubMedPubMedCentralGoogle Scholar
  43. Earl DJ, Deem MW (2004) Evolvability is a selectable trait. Proc Natl Acad Sci USA 101:11531–11536PubMedPubMedCentralCrossRefGoogle Scholar
  44. Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523PubMedCrossRefGoogle Scholar
  45. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99:13374–13376PubMedPubMedCentralCrossRefGoogle Scholar
  46. Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Ahlquist P, Holland JJ (eds) RNA Genetics, vol 3. CRC Press, Boca Raton, pp 211–245Google Scholar
  47. Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization. Springer, BerlinGoogle Scholar
  48. Escarmís C, Dávila M, Domingo E (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet. J Mol Biol 285:495–505PubMedCrossRefGoogle Scholar
  49. Escarmís C, Gómez-Mariano G, Dávila M, Lázaro E, Domingo E (2002) Resistance to extinction of low fitness virus subjected to plaque-to- plaque transfers: diversification by mutation clustering. J Mol Biol 315:647–661PubMedCrossRefGoogle Scholar
  50. Farci P (2011) New insights into the HCV quasispecies and compartmentalization. In: Sem liver disease. pp 356–374Google Scholar
  51. Fernandez G, Clotet B, Martinez MA (2007) Fitness landscape of human immunodeficiency virus type 1 protease quasispecies. J Virol 81:2485–2496PubMedCrossRefGoogle Scholar
  52. Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507PubMedCrossRefGoogle Scholar
  53. Flint S, Enquist L, Racaniello V, Skalka A (2009) Principles of virology. Molecular biology, pathogenesis and control of animal viruses, 3rd edn. ASM Press, Washington DCGoogle Scholar
  54. Gallego I, Sheldon J, Moreno E, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C (2016) Barrier-independent, fitness-associated differences in sofosbuvir efficacy against hepatitis C virus. Antimicrob Agents Chemother 60:3786–3793PubMedPubMedCentralCrossRefGoogle Scholar
  55. García-Arriaza J, Manrubia SC, Toja M, Domingo E, Escarmís C (2004) Evolutionary transition toward defective RNAs that are infectious by complementation. J Virol 78:11678–11685PubMedPubMedCentralCrossRefGoogle Scholar
  56. García-Arriaza J, Ojosnegros S, Dávila M, Domingo E, Escarmis C (2006) Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. J Mol Biol 360:558–572PubMedCrossRefGoogle Scholar
  57. González-López C, Arias A, Pariente N, Gómez-Mariano G, Domingo E (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324PubMedPubMedCentralCrossRefGoogle Scholar
  58. Grande-Pérez A, Lázaro E, Lowenstein P, Domingo E, Manrubia SC (2005) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci USA 102:4448–4452PubMedPubMedCentralCrossRefGoogle Scholar
  59. Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585PubMedCrossRefGoogle Scholar
  60. Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64:3960–3962PubMedPubMedCentralGoogle Scholar
  61. Huynen MA, Stadler PF, Fontana W (1996) Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci USA 93:397–401PubMedPubMedCentralCrossRefGoogle Scholar
  62. Iranzo J, Manrubia SC (2009) Stochastic extinction of viral infectivity through the action of defectors. Europhys Lett 85:18001CrossRefGoogle Scholar
  63. Jacobi MN, Nordahl M (2006) Quasispecies and recombination. Theor Popul Biol 70:479–485PubMedCrossRefGoogle Scholar
  64. Jee J, Rasouly A, Shamovsky I, Akivis Y, Steinman SR, Mishra B, Nudler E (2016) Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing. Nature 534:693–696PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kirkegaard K, van Buuren NJ, Mateo R (2016) My cousin, my enemy: quasispecies suppression of drug resistance. Curr Opin Virol 20:106–111PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kunkel LO (1940) Genetics of viruses pathogenic to plants. Publ Am Assoc Adv Sci 12:22–27Google Scholar
  67. Kuppers BO (2016) The nucleation of semantic information in prebiotic matter. Curr Top Microbiol Immunol 392:23–42PubMedGoogle Scholar
  68. Lazaro E, Escarmis C, Perez-Mercader J, Manrubia SC, Domingo E (2003) Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc Natl Acad Sci USA 100:10830–10835PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lázaro E, Escarmís C, Domingo E, Manrubia SC (2002) Modeling viral genome fitness evolution associated with serial bottleneck events: evidence of stationary states of fitness. J Virol 76:8675–8681PubMedPubMedCentralCrossRefGoogle Scholar
  70. Le Nouen C, McCarty T, Brown M, Smith ML, Lleras R, Dolan MA, Mehedi M, Yang L, Luongo C, Liang B, Munir S, DiNapoli JM, Mueller S, Wimmer E, Collins PL, Buchholz UJ (2017) Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure. Proc Natl Acad Sci USA 114:E386–E395PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lloyd SB, Kent SJ, Winnall WR (2014) The high cost of fidelity. AIDS Res Hum Retroviruses 30:8–16PubMedPubMedCentralCrossRefGoogle Scholar
  72. Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11:450–457PubMedPubMedCentralCrossRefGoogle Scholar
  73. Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96:1492–1497PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lowry K, Woodman A, Cook J, Evans DJ (2014) Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length ‘imprecise’ intermediates. PLoS Pathog 10:e1004191PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lu ZH, Wang X, Wilson AD, Dorey-Robinson DL, Archibald AL, Ait-Ali T, Frossard JP (2017) Quasispecies evolution of the prototypical genotype 1 porcine reproductive and respiratory syndrome virus early during in vivo infection is rapid and tissue specific. Arch Virol 162:2203–2210PubMedPubMedCentralCrossRefGoogle Scholar
  76. Manrubia S, Lazaro E (2016) Getting to know viral evolutionary strategies: towards the next generation of quasispecies models. Curr Top Microbiol Immunol 392:201–217PubMedGoogle Scholar
  77. Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094PubMedPubMedCentralGoogle Scholar
  78. Martin V, Domingo E (2008) Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 25:1544–1554PubMedCrossRefGoogle Scholar
  79. Martin V, Grande-Perez A, Domingo E (2008) No evidence of selection for mutational robustness during lethal mutagenesis of lymphocytic choriomeningitis virus. Virology 378:185–192PubMedCrossRefGoogle Scholar
  80. Mihalik KB, Feigelstock DA (2013) Sensitivity of a ribavirin resistant mutant of hepatitis C virus to other antiviral drugs. PLoS ONE 8:e74027PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moratorio G, Henningsson R, Barbezange C, Carrau L, Borderia AV, Blanc H, Beaucourt S, Poirier EZ, Vallet T, Boussier J, Mounce BC, Fontes M, Vignuzzi M (2017) Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat Microbiol 2:17088PubMedCrossRefGoogle Scholar
  82. Moreno E, Perales C (2016) Distance effects during polyprotein processing in the complementation between defective FMDV RNAs. J Gen Virol 97:1575–1583PubMedCrossRefGoogle Scholar
  83. Moreno E, Ojosnegros S, Garcia-Arriaza J, Escarmis C, Domingo E, Perales C (2014) Exploration of sequence space as the basis of viral RNA genome segmentation. Proc Natl Acad Sci USA 111:6678–6683PubMedPubMedCentralCrossRefGoogle Scholar
  84. Moreno E, Gallego I, Gregori J, Lucia-Sanz A, Soria ME, Castro V, Beach NM, Manrubia S, Quer J, Esteban JI, Rice CM, Gomez J, Gastaminza P, Domingo E, Perales C (2017) Internal disequilibria and phenotypic diversification during replication of hepatitis C virus in a noncoevolving cellular environment. J Virol 91:e02505–02516PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mullins JI, Heath L, Hughes JP, Kicha J, Styrchak S, Wong KG, Rao U, Hansen A, Harris KS, Laurent JP, Li D, Simpson JH, Essigmann JM, Loeb LA, Parkins J (2011) Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS ONE 6:e15135PubMedPubMedCentralCrossRefGoogle Scholar
  86. Muñoz E, Park JM, Deem MW (2008) Quasispecies theory for horizontal gene transfer and recombination. Phys Rev 78:061921CrossRefGoogle Scholar
  87. Nagashima S, Jirintai S, Takahashi M, Kobayashi T, Tanggis Nishizawa T, Kouki T, Yashiro T, Okamoto H (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95:2166–2175PubMedCrossRefGoogle Scholar
  88. Newstein MC, Desrosiers RC (2001) Effects of reverse-transcriptase mutations M184 V and E89G on simian immunodeficiency virus in Rhesus monkeys. J Infect Dis 184:1262–1267PubMedCrossRefGoogle Scholar
  89. Novella IS, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1995) Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci USA 92:5841–5844PubMedPubMedCentralCrossRefGoogle Scholar
  90. Novella IS, Quer J, Domingo E, Holland JJ (1999) Exponential fitness gains of RNA virus populations are limited by bottleneck effects. J Virol 73:1668–1671PubMedPubMedCentralGoogle Scholar
  91. O’Dea EB, Keller TE, Wilke CO (2009) Does mutational robustness inhibit extinction by lethal mutagenesis in viral populations? PLoS Comput Biol 6:e1000811CrossRefGoogle Scholar
  92. Page KM, Nowak MA (2002) Unifying evolutionary dynamics. J Theor Biol 219:93–98PubMedCrossRefGoogle Scholar
  93. Paredes R, Sagar M, Marconi VC, Hoh R, Martin JN, Parkin NT, Petropoulos CJ, Deeks SG, Kuritzkes DR (2009) In vivo fitness cost of the M184 V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J Virol 83:2038–2043PubMedCrossRefGoogle Scholar
  94. Park JM, Deem MW (2007) Phase diagrams of quasispecies theory with recombination and horizontal gene transfer. Phys Rev Lett 98:058101PubMedCrossRefGoogle Scholar
  95. Perales C, Domingo E (2016) Antiviral strategies based on lethal mutagenesis and error threshold. Curr Top Microbiol Immunol 392:323–339PubMedGoogle Scholar
  96. Perales C, Mateo R, Mateu MG, Domingo E (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369:985–1000PubMedCrossRefGoogle Scholar
  97. Perales C, Agudo R, Domingo E (2009) Counteracting quasispecies adaptability: extinction of a ribavirin-resistant virus mutant by an alternative mutagenic treatment. PLoS ONE 4:e5554PubMedPubMedCentralCrossRefGoogle Scholar
  98. Perales C, Moreno E, Domingo E (2015) Clonality and intracellular polyploidy in virus evolution and pathogenesis. Proc Natl Acad Sci USA 112:8887–8892PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100:7289–7294PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness under selective pressure in mice. PLoS Pathog 1:102–110CrossRefGoogle Scholar
  101. Quer J, Huerta R, Novella IS, Tsimring L, Domingo E, Holland JJ (1996) Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J Mol Biol 264:465–471PubMedCrossRefGoogle Scholar
  102. Quer J, Hershey CL, Domingo E, Holland JJ, Novella IS (2001) Contingent neutrality in competing viral populations. J Virol 75:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rawson JM, Landman SR, Reilly CS, Mansky LM (2015) HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 12:60PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM (2017) Single-strand consensus sequencing reveals that HIV type but not subtype significantly impacts viral mutation frequencies and spectra. J Mol Biol 429:2290–2307PubMedCrossRefPubMedCentralGoogle Scholar
  105. Rouzine IM, Rodrigo A, Coffin JM (2001) Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol Mol Biol Rev 65:151–185PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ruiz-Jarabo CM, Arias A, Baranowski E, Escarmís C, Domingo E (2000) Memory in viral quasispecies. J Virol 74:3543–3547PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC (2003a) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:37–47PubMedCrossRefGoogle Scholar
  108. Ruiz-Jarabo CM, Miller E, Gómez-Mariano G, Domingo E (2003b) Synchronous loss of quasispecies memory in parallel viral lineages: a deterministic feature of viral quasispecies. J Mol Biol 333:553–563PubMedCrossRefGoogle Scholar
  109. Sanjuan R (2017) Collective infectious units in viruses. Trends Microbiol 25:402–412PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sanjuan R, Moya A, Elena SF (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci USA 101:8396–8401PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sanz-Ramos M, Diaz-San Segundo F, Escarmis C, Domingo E, Sevilla N (2008) Hidden virulence determinants in a viral quasispecies in vivo. J Virol 82:10465–10476PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sardanyes J, Martinez R, Simo C, Sole R (2017) Abrupt transitions to tumor extinction: a phenotypic quasispecies model. J Math Biol 74:1589–1609PubMedCrossRefGoogle Scholar
  114. Schuster P (2016) Quasispecies on fitness landscapes. Curr Top Microbiol Immunol 392:61–120PubMedGoogle Scholar
  115. Schuster P, Swetina J (1988) Stationary mutant distributions and evolutionary optimization. Bull Math Biol 50:635–660PubMedCrossRefGoogle Scholar
  116. Sheldon J, Beach NM, Moreno E, Gallego I, Pineiro D, Martinez-Salas E, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C (2014) Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. J Virol 88:12098–12111PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shirogane Y, Watanabe S, Yanagi Y (2012) Cooperation between different RNA virus genomes produces a new phenotype. Nat Commun 3:1235PubMedCrossRefGoogle Scholar
  118. Shirogane Y, Watanabe S, Yanagi Y (2016) Cooperative interaction within RNA virus mutant spectra. Curr Top Microbiol Immunol 392:219–229PubMedGoogle Scholar
  119. Sobrino F, Dávila M, Ortín J, Domingo E (1983) Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128:310–318PubMedCrossRefGoogle Scholar
  120. Stadler PF (2016) Evolution of RNA-based networks. Curr Top Microbiol Immunol 392:43–59PubMedGoogle Scholar
  121. Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:281–288PubMedCrossRefGoogle Scholar
  122. Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16:329–345PubMedCrossRefGoogle Scholar
  123. Tejero H, Montero F, Nuno JC (2016) Theories of lethal mutagenesis: from error catastrophe to lethal defection. Curr Top Microbiol Immunol 392:161–179PubMedGoogle Scholar
  124. Teng MN, Oldstone MB, de la Torre JC (1996) Suppression of lymphocytic choriomeningitis virus-induced growth hormone deficiency syndrome by disease-negative virus variants. Virology 223:113–119PubMedCrossRefGoogle Scholar
  125. Urbanowicz A, Alejska M, Formanowicz P, Blazewicz J, Figlerowicz M, Bujarski JJ (2005) Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. J Virol 79:5732–5742PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vaisman A, Woodgate R (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol 52:1–30CrossRefGoogle Scholar
  127. Vanni I, Migliore S, Cosseddu GM, Di Bari MA, Pirisinu L, D’Agostino C, Riccardi G, Agrimi U, Nonno R (2016) Isolation of a defective prion mutant from natural scrapie. PLoS Pathog 12:e1006016PubMedPubMedCentralCrossRefGoogle Scholar
  128. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348PubMedCrossRefGoogle Scholar
  129. Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14:154–161PubMedCrossRefGoogle Scholar
  130. Wagner N, Atsmon-Raz Y, Ashkenasy G (2016) Theoretical models of generalized quasispecies. Curr Top Microbiol Immunol 392:141–159PubMedGoogle Scholar
  131. Weber J, Chakraborty B, Weberova J, Miller MD, Quinones-Mateu ME (2005) Diminished replicative fitness of primary human immunodeficiency virus type 1 isolates harboring the K65R mutation. J Clin Microbiol 43:1395–1400PubMedPubMedCentralCrossRefGoogle Scholar
  132. Weissmann C, Billeter MA, Goodman HM, Hindley J, Weber H (1973) Structure and function of phage RNA. Annu Rev Biochem 42:303–328PubMedCrossRefGoogle Scholar
  133. Weissmann C, Li J, Mahal SP, Browning S (2011) Prions on the move. EMBO Rep 12:1109–1117PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333PubMedCrossRefGoogle Scholar
  135. Xue KS, Hooper KA, Ollodart AR, Dingens AS, Bloom JD (2016) Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture. eLife 5:e13974PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de CantoblancoMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
  3. 3.Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d’Hebron (VHIR-HUVH)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations