European Biophysics Journal

, Volume 46, Issue 8, pp 821–835 | Cite as

Adaptive resolution simulations of biomolecular systems



In this review article, we discuss and analyze some recently developed hybrid atomistic–mesoscopic solvent models for multiscale biomolecular simulations. We focus on the biomolecular applications of the adaptive resolution scheme (AdResS), which allows solvent molecules to change their resolution back and forth between atomistic and coarse-grained representations according to their positions in the system. First, we discuss coupling of atomistic and coarse-grained models of salt solution using a 1-to-1 molecular mapping—i.e., one coarse-grained bead represents one water molecule—for development of a multiscale salt solution model. In order to make use of coarse-grained molecular models that are compatible with the MARTINI force field, one has to resort to a supramolecular mapping, in particular to a 4-to-1 mapping, where four water molecules are represented with one coarse-grained bead. To this end, bundled atomistic water models are employed, i.e., the relative movement of water molecules that are mapped to the same coarse-grained bead is restricted by employing harmonic springs. Supramolecular coupling has recently also been extended to polarizable coarse-grained water models with explicit charges. Since these coarse-grained models consist of several interaction sites, orientational degrees of freedom of the atomistic and coarse-grained representations are coupled via a harmonic energy penalty term. The latter aligns the dipole moments of both representations. The reviewed multiscale solvent models are ready to be used in biomolecular simulations, as illustrated in a few examples.


Molecular dynamics Adaptive resolution Supramolecular coupling 



We would like to thank S. J. Marrink and M. N. Melo for a fruitful collaboration on coupling atomistic and MARTINI molecular models for biomolecular simulations. We are grateful to C. Junghans and K. Kremer for collaboration on the salt solution. We would also like to thank R. Podgornik for collaborating with us on the DNA simulations and J. Sablić for careful reading of the manuscript. We acknowledge financial support through grants P1-0002 and J1-7135 from the Slovenian Research Agency.


  1. Agarwal A, Delle Site L (2015) Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: simulation of liquid water. J Chem Phys 143:094102PubMedCrossRefGoogle Scholar
  2. Agarwal A, Delle Site L (2016) Grand-canonical adaptive resolution centroid molecular dynamics: Implementation and application. Comput Phys Commun 206:26–34CrossRefGoogle Scholar
  3. Agarwal A, Wang H, Schütte C, Delle Site L (2014) Chemical potential of liquids and mixtures via adaptive resolution simulation. J. Chem. Phys. 141:034102PubMedCrossRefGoogle Scholar
  4. Alekseevaa U, Winklerc RG, Sutmanna G (2016) Hydrodynamics in adaptive resolution particle simulations: multiparticle collision dynamics. J Comput Phys 314:14–34CrossRefGoogle Scholar
  5. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  6. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17:192–198PubMedCrossRefGoogle Scholar
  7. Bagchi B (2012) From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 529:1–9CrossRefGoogle Scholar
  8. Basdevant N, Borgis D, Ha-Duong T (2007) A coarse-grained protein–protein potential derived from an all-atom force field. J Phys Chem B 111:9390–9399PubMedCrossRefGoogle Scholar
  9. Bereau T, Deserno M (2009) Generic coarse-grained model for protein folding and aggregation. J Chem Phys 130:235106PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bevc S (2013) Razvoj računalniških orodij za molekularno modeliranje. PhD thesis, Faculty of Mathematics, Natural Sciences and Information Technologies, University of PrimorskaGoogle Scholar
  11. Bevc S, Junghans C, Kremer K, Praprotnik M (2013) Adaptive resolution simulation of salt solutions. New J Phys 15:105007CrossRefGoogle Scholar
  12. Bevc S, Junghans C, Praprotnik M (2015) Stock: structure mapper and online coarse-graining kit for molecular simulations. J Comput Chem 36:467–477PubMedCrossRefGoogle Scholar
  13. Bock H, Gubbins KE, Klapp SH (2007) Coarse graining of nonbonded degrees of freedom. Phys Rev Lett 98:267801PubMedCrossRefGoogle Scholar
  14. Cameron A (2005) Concurrent dual-resolution Monte Carlo simulation of liquid methane. J Chem Phys 123:234101CrossRefGoogle Scholar
  15. Carmichael SP, Shell MS (2012) A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly. J Phys Chem B 116:8383–8393PubMedCrossRefGoogle Scholar
  16. Crow = Columns and Rows of Workstations. vrana/. 28 August 2015
  17. Chebaro Y, Pasquali S, Derreumaux P (2012) The coarse-grained OPEP force field for non-amyloid and amyloid proteins. J Phys Chem B 116:8741–8752PubMedCrossRefGoogle Scholar
  18. Chopraa G, Summab CM, Levitt M (2008) Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 105:20239–20244CrossRefGoogle Scholar
  19. Cragnolini T, Derreumaux P, Pasquali S (2013) Coarse-grained simulations of RNA and DNA duplexes. J Phys Chem B 117:8047–8060PubMedCrossRefGoogle Scholar
  20. Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L (2014) Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci USA 111:3624–3630CrossRefGoogle Scholar
  21. Dans PD, Walther J, Gómez H, Orozco M (2016) Multiscale simulation of DNA. Curr Opin Chem Biol 37:29–45Google Scholar
  22. Dans PD, Zeida A, Machado MR, Pantano S (2010) A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics. J Chem Theory Comput 6:1711–1725PubMedCrossRefGoogle Scholar
  23. Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128:114110PubMedCrossRefGoogle Scholar
  24. Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131:244107PubMedCrossRefGoogle Scholar
  25. Delgado-Buscalioni R, Sablić J, Praprotnik M (2015) Open boundary molecular dynamics. Eur Phys J Spec Top 224:2331–2349CrossRefGoogle Scholar
  26. Delgado-Buscalioni R, Sablić J, Praprotnik M (2015) Reply to comment by R. Klein on open boundary molecular dynamics. Eur Phys J Spec Top 224:2511–2513CrossRefGoogle Scholar
  27. Delle Site L (2016) Formulation of Liouville’s theorem for grand ensemble molecular simulations. Phys Rev E 93:022130PubMedCrossRefGoogle Scholar
  28. Delle Site L, Abrams CF, Alavi A, Kremer K (2002) Polymers near metal surfaces: selective adsorption and global conformations. Phys Rev Lett 89:156103PubMedCrossRefGoogle Scholar
  29. Duan Y, Wu C, Chowdhury S, Lee M, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012PubMedCrossRefGoogle Scholar
  30. Español P, Delgado-Buscalioni R, Everaers R, Potestio R, Donadio D, Kremer K (2015) Statistical mechanics of Hamiltonian adaptive resolution simulations. J Chem Phys 142:064115PubMedCrossRefGoogle Scholar
  31. Fabritiis GD, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97:134501PubMedCrossRefGoogle Scholar
  32. Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic–mesoscopic–continuum flow regimes. J Comput Phys 228:1157–1171CrossRefGoogle Scholar
  33. Fogarty AC, Potestio R, Kremer K (2015) Adaptive resolution simulation of a biomolecule and its hydration shell: structural and dynamical properties. J Chem Phys 142:195101PubMedCrossRefGoogle Scholar
  34. Fogarty AC, Potestio R, Kremer K (2016) A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site. Proteins Struct Funct Bioinform 84:1902–1913CrossRefGoogle Scholar
  35. Foley T, Shell MS, Noid WG (2015) The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 143:243104PubMedCrossRefGoogle Scholar
  36. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, San DiegoGoogle Scholar
  37. Fritsch S, Poblete S, Junghans C, Ciccotti G, Delle Site L, Kremer K (2012) Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir. Phys Rev Lett 108:170602PubMedCrossRefGoogle Scholar
  38. Fuhrmans M, Sanders BP, Marrink SJ, de Vries AH (2010) Effects of bundling on the properties of the SPC water model. Theor Chem Acc 125:335–344CrossRefGoogle Scholar
  39. Gavryushov S (2008) Electrostatics of B-DNA in NaCl and CaCl\(_2\) solutions: ion size, interionic correlation, and solvent dielectric saturation effects. J Phys Chem B 112:8955–8965PubMedCrossRefGoogle Scholar
  40. Goga N, Costache S, Marrink SJ (2009) A multiscalling constant lambda molecular dynamic gromacs implementation. Mater Plast 46:53–57Google Scholar
  41. Gonzales HC, Darré L, Pantano S (2013) Transferable mixing of atomistic and coarse-grain water models. J Phys Chem B 117:14438–14448CrossRefGoogle Scholar
  42. Gopal S, Mukherjee S, Cheng YM, Feig M (2010) PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy. Proteins Struct Funct Bioinform 78:1266–1281CrossRefGoogle Scholar
  43. Gopal SM, Kuhn AB, Schäfer LV (2015) Systematic evaluation of bundled SPC water for biomolecular simulations. Phys Chem Chem Phys 17:8393–8406PubMedCrossRefGoogle Scholar
  44. Halverson JD, Brandes T, Lenz O, Arnold A, Bevc S, Starchenko V, Kremer K, Stuehn T, Reith D (2013) ESPResSo++: a modern multiscale simulation package for soft matter systems. Comput Phys Commun 184:1129–1149CrossRefGoogle Scholar
  45. Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8:4413–4424PubMedPubMedCentralCrossRefGoogle Scholar
  46. Harmandarisab VA, Adhikari NP, van der Vegt NFA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39:67086719Google Scholar
  47. Harmandarisab VA, Kremer K (2009) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926CrossRefGoogle Scholar
  48. Hess B, León S, van der Vegt N, Kremer K (2006) Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter 2:409–414CrossRefGoogle Scholar
  49. Heyden A, Truhlar DG (2008) Conservative algorithm for an adaptive change of resolution in mixed atomistic/coarse-grained multiscale simulations. J Chem Theory Comput 4:217–221PubMedCrossRefGoogle Scholar
  50. Hinckley DM, Lequieu JP, de Pablo JJ (2014) Coarse-grained modeling of DNA oligomer hybridization: length, sequence, and salt effects. J Chem Phys 141:035102PubMedCrossRefGoogle Scholar
  51. Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal S, Periole X, Marrink SJ (2014) The power of coarse-graining in biomolecular simulations. WIREs Comput Mol Sci 4:225–248CrossRefGoogle Scholar
  52. Izvekov S, Parrinello M, Burnham CB, Voth GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys 120:10896–10913PubMedCrossRefGoogle Scholar
  53. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473PubMedCrossRefGoogle Scholar
  54. Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105PubMedCrossRefGoogle Scholar
  55. Izvekov S, Voth GA (2006) Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. J Chem Theory Comput 2:637648Google Scholar
  56. Jedlovszky P, Vincze A, Horvai G (2007) Full description of the orientational statistics of molecules near to interfaces. Water at the interface with CCl4. Phys Chem Chem Phys 6:1874–1879CrossRefGoogle Scholar
  57. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  58. Kamerlin SCL, Vicatos S, Dryga A, Warshel A (2011) Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu Rev Phys Chem 62:41–64PubMedCrossRefGoogle Scholar
  59. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652PubMedCrossRefGoogle Scholar
  60. Knotts TAI, Rathore N, Schwartz DC, de Pablo JJ (2007) A coarse grain model for DNA. J Chem Phys 126:084901PubMedCrossRefGoogle Scholar
  61. Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiöld L (2006) A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations. Nucleic Acids Res 31:5971–5981CrossRefGoogle Scholar
  62. Kranenburg M, Nicolas JP, Smit B (2004) Comparison of mesoscopic phospholipid–water models. Phys Chem Chem Phys 6:4142–4151CrossRefGoogle Scholar
  63. Kreis K, Donadio D, Kremer K, Potestio R (2014) A unified framework for force-based and energy-based adaptive resolution simulations. EPL 108:30007CrossRefGoogle Scholar
  64. Kreis K, Fogarty A, Kremer K, Potestio R (2015) Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations. Eur Phys J Spec Top 224:2289–2304CrossRefGoogle Scholar
  65. Kreis K, Potestio R, Kremer K, Fogarty AC (2016) Adaptive resolution simulations with self-adjusting high-resolution regions. J Chem Theory Comput 12:4067–4081PubMedCrossRefGoogle Scholar
  66. Kuhn AB, Gopal SM, Schäfer LV (2015) On using atomistic solvent layers in hybrid all-atom/coarse-grained molecular dynamics simulations. J Chem Theory Comput 11:4460–4472PubMedCrossRefGoogle Scholar
  67. Lamm G, Pack GR (1997) Calculation of dielectric constants near polyelectrolytes in solution. J Phys Chem B 101:959–965CrossRefGoogle Scholar
  68. Lu J, Yuqing Qiu Y, Baron R, Molinero V (2014) Coarse-graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to monatomic anisotropic water models using relative entropy minimization. J Chem Theory Comput 10:4104–4120PubMedCrossRefGoogle Scholar
  69. Lyubartsev AP (2005) Multiscale modeling of lipids and lipid bilayers. Eur Biophys J 35:53–61PubMedCrossRefGoogle Scholar
  70. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52:3730–3737CrossRefGoogle Scholar
  71. Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A (2015) Systematic hierarchical coarse-graining with the inverse Monte Carlo method. J Chem Phys 143:243120PubMedCrossRefGoogle Scholar
  72. Machado MR, Dans PD, Pantano S (2011) A hybrid all-atom/coarse grain model for multiscale simulations of DNA. Phys Chem Chem Phys 13:18134–18144PubMedCrossRefGoogle Scholar
  73. Machado MR, Pantano S (2015) Exploring Lacl–DNA dynamics by multiscale simulations using the SIRAH force field. J Chem Theory Comput 11:5012–5023PubMedCrossRefGoogle Scholar
  74. Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2014) DNA duplex formation with a coarse-grained model. J Chem Theory Comput 10:5020–5035PubMedPubMedCentralCrossRefGoogle Scholar
  75. Maffeo C, Ngo TTM, Ha T, Aksimentiev A (2014) A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J Chem Theory Comput 10:2891–2896PubMedPubMedCentralCrossRefGoogle Scholar
  76. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824PubMedCrossRefGoogle Scholar
  77. Masella M, Borgis D, Cuniasse P (2008) Combining a polarizable force-field and a coarse-grained polarizable solvent model: application to long dynamics simulations of bovine pancreatic trypsin inhibitor. J Comput Chem 29:1707–1724PubMedCrossRefGoogle Scholar
  78. Masella M, Borgis D, Cuniasse P (2011) Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects. J Comput Chem 32:2664–2678PubMedCrossRefGoogle Scholar
  79. Matysiak S, Clementi C, Praprotnik M, Kremer K, Delle Site L (2008) Modeling diffusive dynamics in adaptive resolution simulation of liquid water. J Chem Phys 128:024503PubMedCrossRefGoogle Scholar
  80. Michel J, Orsi M, Essex JW (2008) Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. J Phys Chem B 112:657–660PubMedCrossRefGoogle Scholar
  81. Mohamed KM, Mohamad AA (2010) A review of the development of hybrid atomistic-continuum methods for dense fluids. Microfluid Nanofluid 8:283–302CrossRefGoogle Scholar
  82. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse grained force field: extension to proteins. J Chem Theory Comput 4:819–834PubMedCrossRefGoogle Scholar
  83. Mukherji D, Kremer K (2013) Coil–globule–coil transition of pnipam in aqueous methanol: coupling all-atom simulations to semi-grand canonical coarse-grained reservoir. Macromolecules 46:9158–9163CrossRefGoogle Scholar
  84. Mullinax JW, Noid WG (2009) Extended ensemble approach for deriving transferable coarse-grained potentials. J Chem Phys 131:104110CrossRefGoogle Scholar
  85. Nagarajan A, Junghans C, Matysiak S (2013) Multiscale simulation of liquid water using a four-to-one mapping for coarse-graining. J Chem Theory Comput 9:5168–5175PubMedCrossRefGoogle Scholar
  86. Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Lett 95:218102PubMedCrossRefGoogle Scholar
  87. Neumann M (1983) Dipole-moment fluctuation formulas in computer-simulations of polar systems. Mol Phys 50:841–858CrossRefGoogle Scholar
  88. Neumann M (1985) The dielectric constant of water. Computer simulations with the MCY potential. J Chem Phys 82:5663–5672CrossRefGoogle Scholar
  89. Nielsen SO, Moore PB, Ensing B (2010) Adaptive multiscale molecular dynamics of macromolecular fluids. Phys Rev Lett 105:237802PubMedCrossRefGoogle Scholar
  90. Noid WG (2013) Perspective: Coarse-grained models for biomolecular systems. J Chem Phys 139:090901PubMedCrossRefGoogle Scholar
  91. Orsi M, Ding W, Palaiokostas M (2014) Direct mixing of atomistic solutes and coarse-grained water. J Chem Theory Comput 10:4684–4693PubMedCrossRefGoogle Scholar
  92. Orsi M, Essex JW (2011) The ELBA force field for coarse-grain modeling of lipid membranes. PLoS One 6:e28637PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134:085101PubMedCrossRefGoogle Scholar
  94. Periole X, Marrink SJ (2013) The MARTINI coarse-grained force field. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer, New York, pp 533–565CrossRefGoogle Scholar
  95. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366CrossRefGoogle Scholar
  96. Peters JH, Klein R, Delle Site L (2016) Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique. Phys Rev E 94:023309PubMedCrossRefGoogle Scholar
  97. Poblete S, Praprotnik M, Kremer K, Delle Site L (2010) Coupling different levels of resolution in molecular simulations. J Chem Phys 132:114101PubMedCrossRefGoogle Scholar
  98. Poma AB, Delle Site L (2010) Classical to path-integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling. Phys Rev Lett 104:250201PubMedCrossRefGoogle Scholar
  99. Poma AB, Delle Site L (2011) Adaptive resolution simulation of liquid para-hydrogen: testing the robustness of the quantum-classical adaptive coupling. Phys Chem Chem Phys 13:10510–10519PubMedCrossRefGoogle Scholar
  100. Potestio R, Español P, Delgado-Buscalioni R, Everaers R, Kremer K, Donadio D (2013) Monte Carlo adaptive resolution simulation of multicomponent molecular liquids. Phys Rev Lett 111:060601PubMedCrossRefGoogle Scholar
  101. Potestio R, Fritsch S, Español P, Delgado-Buscalioni R, Kremer K, Everaers R, Donadio D (2013) Hamiltonian adaptive resolution simulation for molecular liquids. Phys Rev Lett 110:108301PubMedCrossRefGoogle Scholar
  102. Potestio R, Peter C, Kremer K (2014) Computer simulations of soft matter: linking the scales. Entropy 16:4199–4245CrossRefGoogle Scholar
  103. Potoyan DA, Savelyev A, Papoian GA (2013) Recent successes in coarse-grained modeling of DNA. WIREs Comput Mol Sci 3:69–83CrossRefGoogle Scholar
  104. Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123:224106PubMedCrossRefGoogle Scholar
  105. Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571PubMedCrossRefGoogle Scholar
  106. Praprotnik M, Matysiak S, Delle Site L, Kremer K, Clementi C (2007) Adaptive resolution simulation of liquid water. J Phys Condens Matter 19:292201CrossRefGoogle Scholar
  107. Praprotnik M, Poblete S, Kremer K (2011) Statistical physics problems in adaptive resolution computer simulations of complex fluids. J Stat Phys 145:946–966CrossRefGoogle Scholar
  108. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636PubMedCrossRefGoogle Scholar
  109. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461PubMedCrossRefGoogle Scholar
  110. Riniker S, Eichenberger AP, van Gunsteren WF (2012) Solvating atomic level fine-grained proteins in supra-molecular level coarse-grained water for molecular dynamics simulations. Eur Biophys J 41:647–661PubMedCrossRefGoogle Scholar
  111. Riniker S, Eichenberger AP, van Gunsteren WF (2012) Structural effects of an atomic-level layer of water molecules around proteins solvated in supra-molecular coarse-grained water. J Phys Chem B 116:8873–8879PubMedCrossRefGoogle Scholar
  112. Riniker S, van Gunsteren WF (2011) A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations. J Chem Phys 134:084110PubMedCrossRefGoogle Scholar
  113. Rudzinski JF, Noid WG (2015) Bottom–up coarse-graining of peptide ensembles and helixcoil transitions. J Chem Theory Comput 11:1278–1291PubMedCrossRefGoogle Scholar
  114. Rzepiela AJ, Louhivuori M, Peter C, Marrink SJ (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13:10437–10448PubMedCrossRefGoogle Scholar
  115. Sablić J, Praprotnik M, Delgado-Buscalioni R (2016) Open boundary molecular dynamics of sheared star-polymer melts. Soft Matter 12:2416–2439PubMedCrossRefGoogle Scholar
  116. Savelyev A, Papoian GA (2010) Chemically accurate coarse graining of double-stranded DNA. Proc Natl Acad Sci USA 107:20340–20345PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossváry I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B, Wang SC (2007) Anton, a special-purpose machine for molecular dynamics simulation. SIGARCH Comput Archit News 35:1–12CrossRefGoogle Scholar
  118. Shell MS (2008) The relative entropy is fundamental to thermodynamic ensemble optimization. J Chem Phys 129:144108PubMedCrossRefGoogle Scholar
  119. Shelley JC, Shelley MY, Reeder R, Bandyopadhyay S, Klein ML (2001) A coarse grained model for phospholipid simulations. J Phys Chem B 105:4464–4470CrossRefGoogle Scholar
  120. Shen L, Hu H (2014) Resolution-adapted all-atomic and coarse-grained model for biomolecular simulations. J Chem Theory Comput 10:2528–2536PubMedCrossRefGoogle Scholar
  121. Shen L, Yang W (2016) Quantum mechanics/molecular mechanics method combined with hybrid all-atom and coarse-grained model: Theory and application on Redox potential calculations. J Chem Theory Comput. doi: 10.1021/acs.jctc.5b01107
  122. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048PubMedCrossRefGoogle Scholar
  123. Snodin BEK, Randisi F, Mosayebi M, Sulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK (2015) Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 142:234901PubMedCrossRefGoogle Scholar
  124. Sokkar P, Boulanger E, Thiel W, Sanchez-Garcia E (2015) Hybrid quantum mechanics/molecular mechanics/coarse grained modeling: a triple-resolution approach for biomolecular systems. J Chem Theory Comput 11:1809–1818PubMedCrossRefGoogle Scholar
  125. Sokkar P, Choi SM, Rhee YM (2013) Simple method for simulating the mixture of atomistic and coarse-grained molecular systems. J Chem Theory Comput 9:3728–3739PubMedCrossRefGoogle Scholar
  126. Stanley C, Rau D (2011) Evidence for water structuring forces between surfaces. Curr Opin Colloid Interface Sci 16:551–556PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459CrossRefGoogle Scholar
  128. Tschöp W, Kremer K, Hahn O, Batoulis J, Bürger T (1998) Simulation of polymer melts. II. From coarse-grained models back to atomistic description. Acta Polym 49:75–79CrossRefGoogle Scholar
  129. Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New YorkGoogle Scholar
  130. Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945PubMedCrossRefGoogle Scholar
  131. Villa E, Balaeff A, Mahadevan L, Schulten K (2004) Multiscale method for simulating protein–DNA complexes. Multiscale Model Simul 2:527–553CrossRefGoogle Scholar
  132. Villa E, Balaeff A, Schulten K (2005) Structural dynamics of the lac repressor–DNA complex revelead by a multiscale simulation. Proc Natl Acad Sci USA 102:6783–6788PubMedPubMedCentralCrossRefGoogle Scholar
  133. Walther JH, Praprotnik M, Kotsalis EM, Koumoutsakos P (2012) Multiscale simulation of water flow pas a C540 fullerene. J Comput Phys 231:2677–2681CrossRefGoogle Scholar
  134. Wang H, Agarwal A (2015) Adaptive resolution simulation in equilibrium and beyond. Eur Phys J Spec Top 224:2269–2287CrossRefGoogle Scholar
  135. Wang H, Hartmann C, Schütte C, Delle Site L (2013) Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique. Phys Rev X 3:011018Google Scholar
  136. Wang ZJ, Deserno M (2010) A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations. J Phys Chem B 114:11207–11220PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wassenaar TA, Ingólfsson HI, Böckmann RA, Peter Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155PubMedCrossRefGoogle Scholar
  138. Wassenaar TA, Ingólfsson HI, Priess M, Marrink SJ, Schaefer LV (2013) Mixing martini: electrostatic coupling in hybrid atomistic–coarse-grained biomolecular simulations. J Phys Chem B 117:3516–3530PubMedCrossRefGoogle Scholar
  139. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810PubMedPubMedCentralCrossRefGoogle Scholar
  140. Young MA, Jayaram B, Beveridge DL (1998) Local dielectric environment of B-DNA in solution: results from a 14 ns molecular dynamics trajectory. J Phys Chem B 102:7666–7669CrossRefGoogle Scholar
  141. Zavadlav J (2015) Multiscale simulation of biomolecular systems. PhD thesis, Department of Physics, Faculty of Mathematics and Physics, University of LjubljanaGoogle Scholar
  142. Zavadlav J, Marrink SJ, Praprotnik M (2016) Adaptive resolution simulation of supramolecular water: the concurrent making, breaking, and remaking of water bundles. J Chem Theory Comput 12:4138–4145PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zavadlav J, Melo MN, Cunha AV, de Vries AH, Marrink SJ, Praprotnik M (2014) Adaptive resolution simulation of martini solvents. J Chem Theory Comput 10:2591–2598PubMedCrossRefGoogle Scholar
  144. Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2014) Adaptive resolution simulation of an atomistic protein in martini water. J Chem Phys 140:054114PubMedCrossRefGoogle Scholar
  145. Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2015) Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. J Chem Phys 142:244118PubMedCrossRefGoogle Scholar
  146. Zavadlav J, Podgornik R, Melo MN, Marrink SJ, Praprotnik M (2016) Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution. Eur Phys J Spec Top 225:1595–1607CrossRefGoogle Scholar
  147. Zavadlav J, Podgornik R, Praprotnik M (2015) Adaptive resolution simulation of a DNA molecule in salt solution. J Chem Theory Comput 11:5035–5044PubMedCrossRefGoogle Scholar
  148. Zhou HX (2014) Theoretical frameworks for multiscale modeling and simulation. Curr Opin Struct Biol 25:67–76PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2017

Authors and Affiliations

  1. 1.Department of Molecular ModelingNational Institute of ChemistryLjubljanaSlovenia
  2. 2.Department of Physics, Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Chair of Computational ScienceETH ZurichZurichSwitzerland

Personalised recommendations