European Biophysics Journal

, Volume 47, Issue 1, pp 59–67 | Cite as

A potential new, stable state of the E-cadherin strand-swapped dimer in solution

  • Alexandra Schumann-Gillett
  • Alan E. Mark
  • Evelyne Deplazes
  • Megan L. O’Mara
Original Article


E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.


E-cadherin Homodimer Molecular dynamics Converged structure 



Double electron–electron resonance


Extracellular cadherin


GROningen MAchine for Chemical Simulation


Molecular dynamics


Protein Data Bank


Root-mean-square deviation


Simple point charge



This work was supported by grants from the Australian Research Council (ARC) to AEM and MLO (DP130102153), and the Medical Advances Without Animals Trust (MAWA) to MLO, ED and ASG. ED is a NHMRC Early Career Research Fellow. This research was undertaken with the assistance of resources provided at the National Computational Infrastructure National Facility systems, housed at the Australian National University, through the National Computational Merit Allocation Scheme supported by the Australian Government.

Supplementary material

249_2017_1229_MOESM1_ESM.pdf (8.7 mb)
Supplementary material 1 (PDF 8890 kb)


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1006/jmbi.1990.9999 CrossRefPubMedGoogle Scholar
  2. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Netherlands, pp 331–342CrossRefGoogle Scholar
  3. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684. doi: 10.1063/1.448118 CrossRefGoogle Scholar
  4. Boggon TJ, Murray J, Chappuis-Flament S et al (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296(80):1308–1313. doi: 10.1126/science.1071559 CrossRefPubMedGoogle Scholar
  5. Brasch J, Harrison OJ, Ahlsen G et al (2011) Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 408:57–73. doi: 10.1016/j.jmb.2011.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cailliez F, Lavery R (2005) Cadherin mechanics and complexation: the importance of calcium binding. Biophys J 89:3895–3903. doi: 10.1529/biophysj.105.067322 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cailliez F, Lavery R (2006) Dynamics and stability of E-cadherin dimers. Biophys J 91:3964–3971. doi: 10.1529/biophysj.106.087213 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dalle Vedove A, Lucarelli AP, Nardone V et al (2015) The X-ray structure of human P-cadherin EC1-EC2 in a closed conformation provides insight into the type I cadherin dimerization pathway. Acta Crystallogr Sect F Struct Biol Commun 71:371–380. doi: 10.1107/S2053230x15003878 CrossRefGoogle Scholar
  9. Daura X, Gademann K, Jaun B et al (1999a) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. doi: 10.1002/(Sici)1521-3773(19990115)38:1/2<236:Aid-Anie236>3.0.Co;2-M CrossRefGoogle Scholar
  10. Daura X, van Gunsteren WF, Mark AE (1999b) Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations. Proteins 34:269–280. doi: 10.1002/(SICI)1097-0134(19990215)34:3 CrossRefPubMedGoogle Scholar
  11. Feenstra KA, Hess B, Berendsen HJC (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786:AID-JCC5>3.0.CO;2-B CrossRefGoogle Scholar
  12. Harrison OJ, Corps EM, Kilshaw PJ (2005) Cadherin adhesion depends on a salt bridge at the N terminus. J Cell Sci 118:4123–4130. doi: 10.1242/jcs.02539 CrossRefPubMedGoogle Scholar
  13. Harrison OJ, Bahna F, Katsamba PS et al (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17:348–357. doi: 10.1038/nsmb.1784 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Harrison OJ, Jin X, Hong S et al (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256. doi: 10.1016/j.str.2010.11.016 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Häussinger D, Ahrens T, Aberle T et al (2004) Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23:1699–1708. doi: 10.1038/sj.emboj.7600192 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi: 10.1002/(Sici)1096-987x(199709)18:12<1463:Aid-Jcc4>3.0.Co;2-H CrossRefGoogle Scholar
  17. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:27–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  18. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A 32:922–923. doi: 10.1107/S0567739476001873 CrossRefGoogle Scholar
  19. Li Y, Altorelli NL, Bahna F et al (2013) Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion. Proc Natl Acad Sci USA 110:16462–16467. doi: 10.1073/pnas.1314303110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. doi: 10.1007/s008940100045 CrossRefGoogle Scholar
  21. Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958. doi: 10.1002/prot.22711 PubMedPubMedCentralGoogle Scholar
  22. Maiorov VN, Crippen GM (1995) Size-independent comparison of protein three-dimensional structures. Proteins 22:273–283. doi: 10.1002/prot.340220308 CrossRefPubMedGoogle Scholar
  23. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962. doi: 10.1002/jcc.540130805 CrossRefGoogle Scholar
  24. Mohamet L, Hawkins K, Ward CM (2011) Loss of function of E-cadherin in embryonic stem cells and the relevance to models of tumorigenesis. J Oncol 2011:352616. doi: 10.1155/2011/352616 CrossRefPubMedGoogle Scholar
  25. Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364. doi: 10.1038/380360a0 CrossRefPubMedGoogle Scholar
  26. Ozawa M (2002) Lateral dimerization of the E-cadherin extracellular domain is necessary but not sufficient for adhesive activity. J Biol Chem 277:19600–19608. doi: 10.1074/jbc.M202029200 CrossRefPubMedGoogle Scholar
  27. Parisini E, Higgins JM, Liu JH et al (2007) The crystal structure of human E-cadherin domains 1 and 2, and comparison with other cadherins in the context of adhesion mechanism. J Mol Biol 373:401–411. doi: 10.1016/j.jmb.2007.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Patel SD, Chen CP, Bahna F et al (2003) Cadherin-mediated cell–cell adhesion: sticking together as a family. Curr Opin Struct Biol 13:690–698. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  29. Pertz O, Bozic D, Koch AW et al (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18:1738–1747. doi: 10.1093/emboj/18.7.1738 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J with Biophys Lett 40:843–856. doi: 10.1007/s00249-011-0700-9 CrossRefGoogle Scholar
  31. Shapiro L, Fannon AM, Kwong PD et al (1995) Structural basis of cell–cell adhesion by cadherins. Nature 374:327–337. doi: 10.1038/374327a0 CrossRefPubMedGoogle Scholar
  32. Sivasankar S, Zhang Y, Nelson WJ, Chu S (2009) Characterizing the initial encounter complex in cadherin adhesion. Structure 17:1075–1081. doi: 10.1016/j.str.2009.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Takeichi M (1988) The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102:639–655PubMedGoogle Scholar
  34. Takeichi M (1990) Cadherins: a molecular family important in selective cell–cell adhesion. Annu Rev Biochem 59:237–252. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  35. Tamura K, Shan WS, Hendrickson WA et al (1998) Structure–function analysis of cell adhesion by neural (N-) cadherin. Neuron 20:1153–1163. doi: 10.1016/S0896-6273(00)80496-1 CrossRefPubMedGoogle Scholar
  36. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459. doi: 10.1063/1.469273 CrossRefGoogle Scholar
  37. Troyanovsky RB, Sokolov E, Troyanovsky SM (2003) Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 23:7965–7972. doi: 10.1128/MCB.23.22.7965-7972.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  38. van der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi: 10.1002/jcc.20291 CrossRefGoogle Scholar
  39. van Roy F (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14:121–134. doi: 10.1038/nrc3647 CrossRefPubMedGoogle Scholar
  40. Vendome J, Posy S, Jin X et al (2011) Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 18:693–700. doi: 10.1038/nsmb.2051 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vendome J, Felsovalyi K, Song H et al (2014) Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proc Natl Acad Sci USA 111:E4175–E4184. doi: 10.1073/pnas.1416737111 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang YX, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci USA 106:109–114. doi: 10.1073/pnas.0811350106 CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2017

Authors and Affiliations

  1. 1.School of Chemistry and Molecular Biosciences (SCMB)University of QueenslandBrisbaneAustralia
  2. 2.Research School of Chemistry (RSC)The Australian National UniversityCanberraAustralia
  3. 3.The Institute for Molecular Biosciences (IMB)University of QueenslandBrisbaneAustralia
  4. 4.School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityBentleyAustralia

Personalised recommendations