Advertisement

European Biophysics Journal

, Volume 46, Issue 8, pp 705–718 | Cite as

On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components

  • Luka MesarecEmail author
  • Wojciech Góźdź
  • Samo Kralj
  • Miha Fošnarič
  • Samo Penič
  • Veronika Kralj-Iglič
  • Aleš Iglič
Original Article

Abstract

Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.

Keywords

Numerical study Biological membranes Vesicles Anisotropic membrane components Membrane tubular protrusions Actin cytoskeleton 

References

  1. Ahmed S, Goh WI, Bu W (2010) I-bar domains, irsp53 and filopodium formation. Sem Cell Dev Biol 21:350–356 (Elsevier)Google Scholar
  2. Ayton GS, Voth GA (2010) Multiscale simulation of protein mediated membrane remodeling. Semin Cell Dev Biol 21:357–362 (Elsevier)Google Scholar
  3. Ayton GS, Lyman E, Krishna V, Swenson RD, Mim C, Unger VM, Voth GA (2009) New insights into bar domain-induced membrane remodeling. Biophys J 97(6):1616–1625CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baumgart T, Capraro BR, Zhu C, Das SL (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62:483CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernchou U, Brewer J, Midtiby HS, Ipsen JH, Bagatolli LA, Simonsen AC (2009) Texture of lipid bilayer domains. J Am Chem Soc 131(40):14130–14131CrossRefPubMedGoogle Scholar
  6. Bobrovska N, Góźdź W, Kralj-Iglič V, Iglič A (2013) On the role of anisotropy of membrane components in formation and stabilization of tubular structures in multicomponent membranes. PloS One 8(9):e73941CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bohinc K, Kralj-Iglič V, May S (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J Chem Phys 119(14):7435–7444CrossRefGoogle Scholar
  8. Borghi N, Rossier O, Brochard-Wyart F (2003) Hydrodynamic extrusion of tubes from giant vesicles. Europhys Lett 64(6):837CrossRefGoogle Scholar
  9. Boulbitch A (1998) Deflection of a cell membrane under application of a local force. Phys Rev E 57(2):2123CrossRefGoogle Scholar
  10. Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55(3):509–517CrossRefPubMedPubMedCentralGoogle Scholar
  11. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61–81CrossRefPubMedGoogle Scholar
  12. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–76CrossRefPubMedGoogle Scholar
  13. Cuvelier D, Derényi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory, and applications. Biophys J 88(4):2714–2726CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davtyan A, Simunovic M, Voth GA (2016) Multiscale simulations of protein-facilitated membrane remodeling. J Struct Biol 196(1):57–63CrossRefPubMedPubMedCentralGoogle Scholar
  15. Downing KH, Nogales E (1998) Tubulin and microtubule structure. Curr Opin Cell Biol 10(1):16–22CrossRefPubMedGoogle Scholar
  16. Elbaum M, Fygenson DK, Libchaber A (1996) Buckling microtubules in vesicles. Phys Rev Lett 76(21):4078CrossRefPubMedGoogle Scholar
  17. Emsellem V, Cardoso O, Tabeling P (1998) Vesicle deformation by microtubules: a phase diagram. Phys Rev E 58(4):4807CrossRefGoogle Scholar
  18. Fischer TM (1992) Bending stiffness of lipid bilayers. II. Spontaneous curvature of the monolayers. J Phys II 2(3):327–336Google Scholar
  19. Fischer TM (1993) Bending stiffness of lipid bilayers. III. Gaussian curvature. J Phys II 2(3):337–343Google Scholar
  20. Fošnarič M, Iglič A, May S (2006) Influence of rigid inclusions on the bending elasticity of a lipid membrane. Phys Rev E 74(5):051503CrossRefGoogle Scholar
  21. Fošnarič M, Iglič A, Slivnik T, Kralj-Iglič V (2008) Flexible membrane inclusions and membrane inclusions induced by rigid globular proteins. Adv Planar Lipid Bilayers Lipos 7:143–168CrossRefGoogle Scholar
  22. Fournier J (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76(23):4436CrossRefPubMedGoogle Scholar
  23. Fournier JB, Galatola P (1998) Bilayer membranes with 2d-nematic order of the surfactant polar heads. Braz J Phys 28(4):329CrossRefGoogle Scholar
  24. Frost A, Unger VM, De Camilli P (2009) The bar domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fygenson DK, Marko JF, Libchaber A (1997) Mechanics of microtubule-based membrane extension. Phys Rev Lett 79(22):4497CrossRefGoogle Scholar
  26. Gómez-Llobregat J, Elías-Wolff F, Lindén M (2016) Anisotropic membrane curvature sensing by amphipathic peptides. Biophys J 110(1):197–204CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gompper G, Kroll DM (2004) Triangulated-surface models of fluctuating membranes. In: Nelson D, Piran T, Weinberg S (eds) Statistical mechanics of membranes and surfaces. 2nd edn World Scientific, Singapore, pp 359–426Google Scholar
  28. Gompper G, Kroll DM (1996) Random surface discretizations and the renormalization of the bending rigidity. J Phys I 6(10):1305–1320Google Scholar
  29. Gov NS, Gopinathan A (2006) Dynamics of membranes driven by actin polymerization. Biophys J 90(2):454–469CrossRefPubMedGoogle Scholar
  30. Góźdź WT (2004) Spontaneous curvature induced shape transformation of tubular polymersomes. Langmuir 20:7385–7391CrossRefPubMedGoogle Scholar
  31. Góźdź WT (2005) Influence of spontaneous curvature and microtubules on the conformations of lipid vesicles. J Phys Chem B 109:21145–21149CrossRefPubMedGoogle Scholar
  32. Góźdź WT (2006) The interface width of separated two-component lipid membranes. J Phys Chem B 110:21981–21986CrossRefPubMedGoogle Scholar
  33. Góźdź WT, Bobrovska N, Ciach A (2012) Separation of components in lipid membranes induced by shape transformation. J Chem Phys 137(1):015101CrossRefPubMedGoogle Scholar
  34. Häckl W, Bärmann M, Sackmann E (1998) Shape changes of self-assembled actin bilayer composite membranes. Phys Rev Lett 80:1786–1789CrossRefGoogle Scholar
  35. Hägerstrand H, Mrowczynska L, Salzer U, Prohaska R, Michelsen KA, Kralj-Iglič V, Iglič A (2006) Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membr Biol 23(3):277–288CrossRefPubMedGoogle Scholar
  36. Heinrich V, Božič B, Svetina S, Žekš B (1999) Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. Biophys J 76(4):2056–2071CrossRefPubMedPubMedCentralGoogle Scholar
  37. Heinrich V, Waugh RE (1996) A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann Biomed Eng 24(5):595–605CrossRefPubMedGoogle Scholar
  38. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:693–703Google Scholar
  39. Helfrich W, Prost J (1988) Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A 38(6):3065CrossRefGoogle Scholar
  40. Hill TL (1986) An introduction to statistical thermodynamics. Dover PressGoogle Scholar
  41. Iglič A, Kralj-Iglič V, Majhenc J (1999) Cylindrical shapes of closed lipid bilayer structures correspond to an extreme area difference between the two monolayers of the bilayer. J Biomech 32(12):1343–1347CrossRefPubMedGoogle Scholar
  42. Iglič A, Veranič P, Batista U, Kralj-Iglič V (2001) Theoretical analysis of shape transformation of v-79 cells after treatment with cytochalasin b. J Biomech 34(6):765–772CrossRefPubMedGoogle Scholar
  43. Iglič A, Babnik B, Gimsa U, Kralj-Iglič V (2005) On the role of membrane anisotropy in the beading transition of undulated tubular membrane structures. J Phys A-Math Gen 38(40):8527CrossRefGoogle Scholar
  44. Iglič A, Hägerstrand H, Veranič P, Plemenitaš A, Kralj-Iglič V (2006) Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions. J Theor Biol 240(3):368–373CrossRefPubMedGoogle Scholar
  45. Iglič A, Babnik B, Bohinc K, Fošnarič M, Hägerstrand H, Kralj-Iglič V (2007) On the role of anisotropy of membrane constituents in formation of a membrane neck during budding of a multicomponent membrane. J Biomech 40(3):579–585CrossRefPubMedGoogle Scholar
  46. Iglič A, Lokar M, Babnik B, Slivnik T, Veranič P, Hägerstrand H, Kralj-Iglič V (2007) Possible role of flexible red blood cell membrane nanodomains in the. Blood Cell Mol Dis 39(1):14–23CrossRefGoogle Scholar
  47. Iglič A, Kralj-Iglič V, Drobne D (2015) Nanostructures in Biological Systems: theory and applications. Pan Stanford Publishing Pte. LtdGoogle Scholar
  48. Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier MF (1995) Flexibility of actin filaments derived from thermal fluctuations. effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444CrossRefPubMedGoogle Scholar
  49. Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic PressGoogle Scholar
  50. Jelerčič U, Gov NS (2015) Pearling instability of membrane tubes driven by curved proteins and actin polymerization. Phys Biol 12(6):066022CrossRefPubMedGoogle Scholar
  51. Jesenek D, Perutková S, Góźdź W, Kralj-Iglič V, Iglič A, Kralj S (2013) Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering. Int J Nanomed 8:677–687CrossRefGoogle Scholar
  52. Kabaso D, Bobrovska N, Góźdź W, Gov N, Kralj-Iglič V, Veranič P, Iglič A (2012) On the role of membrane anisotropy and bar proteins in the stability of tubular membrane structures. J Biomech 45(2):231–238CrossRefPubMedGoogle Scholar
  53. Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglič V, Zorec R, Iglič A (2012) The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 87:204–210CrossRefPubMedGoogle Scholar
  54. Kralj-Iglič V, Svetina S, Žekš B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24(5):311–321CrossRefPubMedGoogle Scholar
  55. Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10:5–8CrossRefGoogle Scholar
  56. Kralj-Iglič V, Iglič A, Hägerstrand H, Peterlin P (2000) Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys Rev E 61:4230–4234CrossRefGoogle Scholar
  57. Kralj-Iglič V, Iglič A, Gomišček G, Sevšek F, Arrigler V, Hägerstrand H (2002) Microtubes and nanotubes of a phospholipid bilayer membrane. J Phys A-Math Gen 35(7):1533–1549CrossRefGoogle Scholar
  58. Kralj-Iglič V, Remškar M, Vidmar G, Fošnarič M, Iglič A (2002) Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes. Phys Lett A 296(2):151–155CrossRefGoogle Scholar
  59. Kralj-Iglič V, Hägerstrand H, Veranič P, Jezernik K, Babnik B, Gauger DR, Iglič A (2005) Amphiphile-induced tubular budding. Eur Biophys J 34(8):1066–1070CrossRefPubMedGoogle Scholar
  60. Kralj-Iglič V, Babnik B, Gauger D, May S, Iglič A (2006) Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J Stat Phys 125(3):727–752CrossRefGoogle Scholar
  61. Kralj-Iglic V (2012) Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomed 7:3579–3596CrossRefGoogle Scholar
  62. Kulkarni CV (2012) Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale 4(19):5779–5791CrossRefPubMedGoogle Scholar
  63. Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA (2008) Membrane-induced bundling of actin filaments. Nat Phys 4(10):789–793CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lubensky T, Prost J (1992) Orientational order and vesicle shape. J Phys II 2(3):371–382Google Scholar
  65. MacKintosh FC, Lubensky TC (1991) Orientational order, topology, and vesicle shapes. Phys Rev Lett 67:1169–1172CrossRefPubMedGoogle Scholar
  66. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590CrossRefPubMedGoogle Scholar
  67. Mesarec L, Góźdź W, Kralj Iglič V, Kralj S, Iglič A (2016) Closed membrane shapes with attached bar domains subject to external force of actin filaments. Colloid Surface B 141:132–140CrossRefGoogle Scholar
  68. Miyata H, Nishiyama S, Akashi KI, Kinosita K (1999) Protrusive growth from giant liposomes driven by actin polymerization. P Natl Acad Sci USA 96(5):2048–2053Google Scholar
  69. Noguchi H (2016) Membrane tubule formation by banana-shaped proteins with or without transient network structure. Scientific Reports 6Google Scholar
  70. Penič S, Iglič A, Bivas I, Fošnarič M (2015) Bending elasticity of vesicle membranes studied by Monte Carlo simulations of vesicle thermal shape fluctuations. Soft Matter 11(25):5004–5009CrossRefPubMedGoogle Scholar
  71. Perutková Š, Daniel M, Dolinar G, Rappolt M, Kralj-Iglič V, Iglič A (2009) Stability of the inverted hexagonal phase. Adv Planar Lipid Bilayers Liposomes 9:237–278CrossRefGoogle Scholar
  72. Perutková Š, Kralj-Iglič V, Frank M, Iglič A (2010) Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins. J Biomech 43(8):1612–1617CrossRefPubMedGoogle Scholar
  73. Perutková Š, Daniel M, Rappolt M, Pabst G, Dolinar G, Kralj-Iglič V, Iglič A (2011) Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations. Phys Chem Chem Phys 13(8):3100–3107CrossRefPubMedGoogle Scholar
  74. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) Bar domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495CrossRefPubMedGoogle Scholar
  75. Ramakrishnan N, Kumar PS, Ipsen JH (2010) Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 81(4):041922CrossRefGoogle Scholar
  76. Ramakrishnan N, Kumar PBS, Ipsen JH (2011) Modeling anisotropic elasticity of fluid membranes. Macromol Theor Simul 20(7):446–450CrossRefGoogle Scholar
  77. Ramakrishnan N, Ipsen JH, Kumar PS (2012) Role of disclinations in determining the morphology of deformable fluid interfaces. Soft Matter 8(11):3058–3061CrossRefGoogle Scholar
  78. Ramakrishnan N, Kumar PS, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104(5):1018–1028CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P (2008) Conformational and hydrational properties during the-to-and-to hii-phase transition in phosphatidylethanolamine. Chem Phys Lipids 154(1):46–55CrossRefPubMedGoogle Scholar
  80. Saarikangas J, Zhao H, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PK, Butcher SJ, Lappalainen P (2009) Molecular mechanisms of membrane deformation by i-bar domain proteins. Curr Biol 19(2):95CrossRefPubMedGoogle Scholar
  81. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) Irsp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18(2):52–60CrossRefPubMedGoogle Scholar
  82. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137CrossRefGoogle Scholar
  83. Shlomovitz R, Gov NS (2008) Physical model of contractile ring initiation in dividing cells. Biophys J 94(4):1155–1168CrossRefPubMedGoogle Scholar
  84. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harbor Perspect Biol 3(10):a004,697Google Scholar
  85. Simunovic M, Voth GA, Callan-Jones A, Bassereau P (2015) When physics takes over: Bar proteins and membrane curvature. Trends Cell Biol 25(12):780–792CrossRefPubMedPubMedCentralGoogle Scholar
  86. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720CrossRefPubMedGoogle Scholar
  87. Smith G, Sirota E, Safinya C, Clark NA (1988) Structure of the l \(\beta\) phases in a hydrated phosphatidylcholine multimembrane. Phys Rev Lett 60(9):813CrossRefPubMedGoogle Scholar
  88. Suetsugu S (2010) The proposed functions of membrane curvatures mediated by the bar domain superfamily proteins. J Biochem 148(1):1–12CrossRefPubMedGoogle Scholar
  89. Templer RH (1998) Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr Opin Colloid Interface Sci 3(3):255–263CrossRefGoogle Scholar
  90. Umeda T, Nakajima H, Hotani H (1998) Theoretical analysis of shape transformations of liposomes caused by microtubule assembly. J Phys Soc Jpn 67(2):682–688CrossRefGoogle Scholar
  91. Veksler A, Gov NS (2007) Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. Biophys J 93(11):3798–3810CrossRefPubMedPubMedCentralGoogle Scholar
  92. Venier P, Maggs AC, Carlier MF, Pantaloni D (1994) Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biol Chem 269(18):13353–13360PubMedGoogle Scholar
  93. Wade RH, Hyman AA (1997) Microtubule structure and dynamics. Curr Opin Cell Biol 9(1):12–17CrossRefPubMedGoogle Scholar
  94. Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. Phys Rev E 89(6):062715CrossRefGoogle Scholar
  95. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PloS One 4(5):e5678CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19CrossRefPubMedGoogle Scholar
  97. Zimmerberg J, McLaughlin S (2004) Membrane curvature: how bar domains bend bilayers. Curr Biol 14(6):R250–R252CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2017

Authors and Affiliations

  1. 1.Laboratory of Biophysics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of Physical Chemistry, Polish Academy of SciencesWarsawPoland
  3. 3.Department of Physics, Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  4. 4.Jožef Stefan InstituteLjubljanaSlovenia
  5. 5.Laboratory of Clinical Biophysics, Faculty of Health SciencesUniversity of LjubljanaLjubljanaSlovenia
  6. 6.Laboratory of Clinical Biophysics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations