Advertisement

European Biophysics Journal

, Volume 46, Issue 6, pp 549–559 | Cite as

Comparative study of the structure and interaction of the pore helices of the hERG and Kv1.5 potassium channels in model membranes

  • Maïwenn Beaugrand
  • Alexandre A. Arnold
  • Steve Bourgault
  • Philip T. F. Williamson
  • Isabelle Marcotte
Original Article
  • 234 Downloads

Abstract

The hERG channel is a voltage-gated potassium channel found in cardiomyocytes that contributes to the repolarization of the cell membrane following the cardiac action potential, an important step in the regulation of the cardiac cycle. The lipids surrounding K+ channels have been shown to play a key role in their regulation, with anionic lipids shown to alter gating properties. In this study, we investigate how anionic lipids interact with the pore helix of hERG and compare the results with those from Kv1.5, which possesses a pore helix more typical of K+ channels. Circular dichroism studies of the pore helix secondary structure reveal that the presence of the anionic lipid DMPS within the bilayer results in a slight unfolding of the pore helices from both hERG and Kv1.5, albeit to a lesser extent for Kv1.5. In the presence of anionic lipids, the two pore helices exhibit significantly different interactions with the lipid bilayer. We demonstrate that the pore helix from hERG causes significant perturbation to the order in lipid bicelles, which contrasts with only small changes observed for Kv1.5. These observations suggest that the atypical sequence of the pore helix of hERG may play a key role in determining how anionic lipids influence its gating.

Keywords

Ion channel Bicelles Lipids Dodecylphosphocholine Nuclear magnetic resonance Circular dichroism 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. MB wishes to thank the Université du Québec à Montréal, the NSERC Training Program in Bionanomachines, the Canadian Institutes of Health Research Strategic Training Initiative in Chemical Biology, and the Centre Québécois sur les Matériaux Fonctionnels (CQMF) for the award of scholarships. Phuong Trang Nguyen is gratefully acknowledged for the peptide synthesis and purification. IM is a member of the CQMF and the Groupe de Recherche Axé sur la Structure des Protéines (GRASP). SB is a member of the GRASP and the Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO.

Supplementary material

249_2017_1201_MOESM1_ESM.pdf (597 kb)
Supplementary material 1 (PDF 597 kb)

References

  1. Alvis SJ, Williamson IM, East JM, Lee AG (2003) Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA. Biophys J 85:3828–3838CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold A, Labrot T, Oda R, Dufourc EJ (2002) Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy. Biophys J 83:2667–2680CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Mol Biol 8:334–338CrossRefGoogle Scholar
  4. Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J Biophy 33:109–116CrossRefGoogle Scholar
  5. Beaugrand M, Arnold AA, Juneau A, Gambaro AB, Warschawski DE, Williamson PT, Marcotte I (2016) Magnetically oriented bicelles with monoalkylphosphocholines: versatile membrane mimetics for nuclear magnetic resonance applications. Langmuir 32:13244–13251CrossRefPubMedGoogle Scholar
  6. Briggs ELA, Gomes RGB, Elhussein M, Collier W, Findlow IS, Khalid S, McCormick CJ, Williamson PTF (2015) Interaction between the NS4B amphipathic helix, AH2, and charged lipid headgroups alters membrane morphology and AH2 oligomeric state—Implications for the Hepatitis C virus life cycle. Bba-Biomembranes 1848:1671–1677CrossRefGoogle Scholar
  7. Chartrand É, Arnold AA, Gravel A, Jenna S, Marcotte I (2010) Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. Biochim Biophys Acta 1798:1651–1662CrossRefPubMedGoogle Scholar
  8. Damberg P, Jarvet J, Gräslund A (2001) Micellar systems as solvents in peptide and protein structure determination. In: Thomas L, James VD, Uli S (eds) Methods in enzymology, vol 339. Academic Press, New York, pp 271–285. doi: 10.1016/S0076-6879(01)39318-7
  9. Davis JH, Jeffrey KR, Bloom M, Valic MI, Higgs TP (1976) Quadrupolar echo deuteron magnetic-resonance spectroscopy in ordered hydrocarbon chains. Chem Phys Lett 42:390–394CrossRefGoogle Scholar
  10. De Carufel CA, Quittot N, Nguyen PT, Bourgault S (2015) Delineating the role of helical intermediates in natively unfolded polypeptide amyloid assembly and cytotoxicity. Angew Chem Int Ed Engl 54:14383–14387CrossRefPubMedGoogle Scholar
  11. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K1 conduction and selectivity. Science 280:69–77CrossRefPubMedGoogle Scholar
  12. Gravel AE, Arnold AA, Dufourc EJ, Marcotte I (2013) An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome. Biochim Biophys Acta 1828:1494–1502CrossRefPubMedGoogle Scholar
  13. Hite RK, Butterwick JA, MacKinnon R (2014) Phosphatidic acid modulation of Kv channel voltage sensor function. eLife 3Google Scholar
  14. Kallick DA, Tessmer MR, Watts CR, Li C-Y (1995) The use of dodecylphosphocholine micelles in solution NMR. J Magn Reson B 109:60–65CrossRefPubMedGoogle Scholar
  15. Kamiya K, Niwa R, Mitcheson JS, Sanguinetti MC (2006) Molecular determinants of hERG channel block. Mol Pharmacol 69:1709–1716CrossRefPubMedGoogle Scholar
  16. Koehler J, Sulistijo ES, Sakakura M, Kim HJ, Ellis CD, Sanders CR (2010) Lysophospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. Biochemistry 49:7089–7099CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kutteh R, Vandenberg JI, Kuyucak S (2007) Molecular dynamics and continuum electrostatics studies of inactivation in the HERG potassium channel. J Phys Chem B 111:1090–1098CrossRefPubMedGoogle Scholar
  18. Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40CrossRefPubMedGoogle Scholar
  19. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87CrossRefPubMedGoogle Scholar
  20. Lindström F, Williamson PTF, Gröbner G (2005) Molecular insight into the electrostatic membrane surface potential by 14 N/31P MAS NMR spectroscopy: nociceptin—lipid association. J Am Chem Soc 127:6610–6616CrossRefPubMedGoogle Scholar
  21. Marcotte I, Dufourc EJ, Ouellet M, Auger M (2003) Interaction of the neuropeptide met-enkephalin with zwitterionic and negatively charged bicelles as viewed by 31P and 2H solid-state NMR. Biophys J 85:328–339CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marius P, Zagnoni M, Sandison ME, East JM, Morgan H, Lee AG (2008) Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. Biophys J 94:1689–1698CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marius P, de Planque MRR, Williamson PTF (2012) Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR. Biochim Biophys Acta 1818:90–96CrossRefPubMedPubMedCentralGoogle Scholar
  24. Marsh D (2013) Handbook of lipid bilayers, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  25. Ng C, Torres A, Pagès G, Kuchel P, Vandenberg J (2013) Insights into hERG K+ channel structure and function from NMR studies. Eur Biophys J 42:71–79CrossRefPubMedGoogle Scholar
  26. Ng C-A, Gravel AE, Perry MD, Arnold AA, Marcotte I, Vandenberg JI (2016) Tyrosine residues from the S4–S5 linker of Kv11.1 channels are critical for slow deactivation. J Biol Chem 291:17293–17302CrossRefPubMedGoogle Scholar
  27. Nolandt OV, Walther TH, Grage SL, Ulrich AS (2012) Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. Biochim Biophys Acta 1818:1142–1147CrossRefPubMedGoogle Scholar
  28. Pages G, Torres A, Ju P, Bansal P, Alewood P, Kuchel P, Vandenberg J (2009) Structure of the pore-helix of the hERG K+ channel. Eur Biophys J 39:111–120CrossRefPubMedGoogle Scholar
  29. Pearlstein R, Vaz R, Rampe D (2003) Understanding the structure-activity relationship of the human ether-a-gogo-related gene cardiac K+ channel. A model for bad behavior. J Med Chem 46:2017–2022CrossRefPubMedGoogle Scholar
  30. Pott T, Dufourc EJ (1995) Action of melittin on the Dppc-cholesterol liquid-ordered phase—a solid-state H-2-Nmr and P-31-Nmr study. Biophys J 68:965–977CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ramu Y, Xu Y, Lu Z (2006) Enzymatic activation of voltage-gated potassium channels. Nature 442:696–699CrossRefPubMedGoogle Scholar
  32. Rance M, Byrd RA (1983) Obtaining high-fidelity spin-1/2 powder spectra in anisotropic media—phase-cycled Hahn echo spectroscopy. J Magn Reson 52:221–240Google Scholar
  33. Russ KA, Elvati P, Parsonage TL, Dews A, Jarvis JA, Ray M, Schneider B, Smith PJS, Williamson PTF, Violi A, Philbert MA (2016) C-60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale 8:4134–4144CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469CrossRefPubMedGoogle Scholar
  35. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299CrossRefPubMedGoogle Scholar
  36. Seelig J, Borle F, Cross TA (1985) Magnetic-ordering of phospholipid-membranes. Biochim Biophys Acta 814:195–198CrossRefGoogle Scholar
  37. Silvius JR, Gagne J (1984) Calcium-induced fusion and lateral phase separations in phosphatidylcholine-phosphatidylserine vesicles. Correlation by calorimetric and fusion measurements. Biochemistry 23:3241–3247CrossRefGoogle Scholar
  38. Speyer JB, Sripada PK, Dasgupta SK, Shipley GG, Griffin RG (1987) Magnetic orientation of sphingomyelin lecithin bilayers. Biophys J 51:687–691CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260CrossRefPubMedGoogle Scholar
  40. Stansfeld PJ, Gedeck P, Gosling M, Cox B, Mitcheson JS, Sutcliffe MJ (2007) Drug block of the hERG potassium channel: insight from modeling. Proteins Struct Funct Bioinform 68:568–580CrossRefGoogle Scholar
  41. Subbiah RN, Clarke CE, Smith DJ, Zhao J, Campbell TJ, Vandenberg JI (2004) Molecular basis of slow activation of the human ether-à-go-go related gene potassium channel. J Physiol 558:417–431CrossRefPubMedPubMedCentralGoogle Scholar
  42. Subbotina J, Yarov-Yarovoy V, Lees-Miller J, Durdagi S, Guo J, Duff HJ, Noskov SY (2010) Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. Proteins Struct Funct Bioinform 78:2922–2934CrossRefGoogle Scholar
  43. Swartz KJ (2006) Greasing the gears of potassium channels. Nat Chem Biol 2:401–402CrossRefPubMedGoogle Scholar
  44. Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E (2004) Pharmacology of cardiac potassium channels. Cardiovasc Res 62:9–33CrossRefPubMedGoogle Scholar
  45. Tardy-Laporte C, Arnold AA, Genard B, Gastineau R, Morançais M, Mouget JL, Tremblay R, Marcotte I (2013) A 2H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. Biochim Biophys Acta 1828:614–622CrossRefPubMedGoogle Scholar
  46. Triba MN, Warschawski DE, Devaux PF (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 88:1887–1901CrossRefPubMedGoogle Scholar
  47. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95CrossRefPubMedGoogle Scholar
  48. Tseng G-N, Sonawane KD, Korolkova YV, Zhang M, Liu J, Grishin EV, Guy HR (2007) Probing the outer mouth structure of the hERG channel with peptide toxin footprinting and molecular modeling. Biophys J 92:3524–3540CrossRefPubMedPubMedCentralGoogle Scholar
  49. van der Cruijsen EAW, Nand D, Weingarth M, Prokofyev A, Hornig S, Cukkemane AA, Bonvin AMJJ, Becker S, Hulse RE, Perozo E, Pongs O, Baldus M (2013) Importance of lipid–pore loop interface for potassium channel structure and function. Proc Nat Acad Sci USA 110:13008–13013CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K+ channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478CrossRefPubMedGoogle Scholar
  51. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974CrossRefPubMedGoogle Scholar
  52. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400CrossRefPubMedGoogle Scholar
  53. Williamson MI, Alvis JS, East MJ, Lee GA (2003) The potassium channel KcsA and its interaction with the lipid bilayer. Cell Mol Life Sci 60:1581–1590CrossRefPubMedGoogle Scholar
  54. Wulff H, Castel NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zandomeneghi G, Tomaselli M, Williamson PTF, Meier BH (2003) NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation. J Biomol NMR 25:113–123CrossRefPubMedGoogle Scholar
  56. Zaydman MA, Cui J (2014) PIP(2) regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Nat Acad Sci USA 110:13180–13185CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversité du Québec à MontréalMontrealCanada
  2. 2.School of Biological Sciences, Highfield CampusUniversity of SouthamptonSouthamptonUK

Personalised recommendations