Advertisement

European Biophysics Journal

, Volume 46, Issue 4, pp 383–393 | Cite as

Interaction of Artepillin C with model membranes

  • Wallance Moreira Pazin
  • Danilo da Silva Olivier
  • Neus Vilanova
  • Ana Paula Ramos
  • Ilja Karina Voets
  • Ademilson Espencer Egea Soares
  • Amando Siuiti Ito
Original Article

Abstract

Green propolis, a mixture of beeswax and resinous compounds processed by Apis mellifera, displays several pharmacological properties. Artepillin C, the major compound in green propolis, consists of two prenylated groups bound to a phenyl group. Several studies have focused on the therapeutic effects of Artepillin C, but there is no evidence that it interacts with amphiphilic aggregates to mimic cell membranes. We have experimentally and computationally examined the interaction between Artepillin C and model membranes composed of dimyristoylphosphatidylcholine (DMPC) because phosphatidylcholine (PC) is one of the most abundant phospholipids in eukaryotic cell membranes. PC is located in both outer and inner leaflets and has been used as a simplified membrane model and a non-specific target to study the action of amphiphilic molecules with therapeutic effects. Experimental results indicated that Artepillin C adsorbed onto the DMPC monolayers. Its presence in the lipid suspension pointed to an increased tendency toward unilamellar vesicles and to decreased bilayer thickness. Artepillin C caused point defects in the lipid structure, which eliminated the ripple phase and the pre-transition in thermotropic chain melting. According to molecular dynamics (MD) simulations, (1) Artepillin C aggregated in the aqueous phase before it entered the bilayer; (2) Artepillin C was oriented along the direction normal to the surface; (3) the negatively charged group on Artepillin C was accommodated in the polar region of the membrane; and (4) thinner regions emerged around the Artepillin C molecules. These results help an understanding of the molecular mechanisms underlying the biological action of propolis.

Keywords

DMPC Model membranes Artepillin C Green propolis Langmuir monolayer 

Notes

Acknowledgements

We thank Dr. Georg Pabst for help with the GAP software, Dr. Galina Borissevitch for useful discussion on the monolayer experiments and Cynthia Maria de Campos Prado Manso for helping to revise the English language. The research was supported by the Brazilian agencies CAPES, CNPq (Process Numbers 232302/2014-6 and 304981/2012-5), and FAPESP (Process Number 2014/26895). This research is part of the research program of the Dutch Polymer Institute (DPI), projects #772a and #772ap.

References

  1. Alhassan AM, Abdullahi MI, Uba A, Umar A (2014) Prenylation of aromatic secondary metabolites : a new frontier for development of novel drugs. Trop J Pharm Res 13:307–314CrossRefGoogle Scholar
  2. Arslan S, Silici S, Percin D (2012) Antimicrobial activity of poplar propolis on mutans streptococci and caries development in rats. Turk J Biol 36:65–73. doi: 10.3906/biy-1101-180 Google Scholar
  3. Barioni MB, Ramos AP, Zaniquelli MED, Acuña AU, Ito AS (2015) Miltefosine and BODIPY-labeled alkylphosphocholine with leishmanicidal activity: aggregation properties and interaction with model membranes. Biophys Chem 196:92–99. doi: 10.1016/j.bpc.2014.10.002 CrossRefPubMedGoogle Scholar
  4. Basso LGM, Rodrigues RZ, Naal RMZG, Costa-Filho AJ (2011) Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. Biochim Biophys Acta 1808(1):55–64. doi: 10.1016/j.bbamem.2010.08.009 CrossRefPubMedGoogle Scholar
  5. Bastos EMAF, Simone M, Jorge DM, Soares AEE, Spivak M (2008) In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J Invertebr Pathol 97(3):273–281. doi: 10.1016/j.jip.2007.10.007 CrossRefPubMedGoogle Scholar
  6. Bonvehí JS, Gutiérrez AL (2012) The antimicrobial effects of propolis collected in different regions in the Basque Country (Northern Spain). World J Microbiol Biotechnol 28(4):1351–1358. doi: 10.1007/s11274-011-0932-y CrossRefPubMedGoogle Scholar
  7. Fa N, Ronkart S, Schanck A, Deleu M, Gaigneaux A, Goormaghtigh E, Mingeot-Leclercq MP (2006) Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers. Chem Phys Lipids 144(1):108–116. doi: 10.1016/j.chemphyslip.2006.08.002 CrossRefPubMedGoogle Scholar
  8. Gaboriaud F, Volinsky R, Berman A, Jelinek R (2005) Temperature dependence of the organization and molecular interactions within phospholipid/diacetylene Langmuir films. J Colloid Interface Sci 287(1):191–197. doi: 10.1016/j.jcis.2005.01.110 CrossRefPubMedGoogle Scholar
  9. Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos C (2006) A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm 318(1–2):118–123. doi: 10.1016/j.ijpharm.2006.03.023 CrossRefPubMedGoogle Scholar
  10. Gradella Villalva D, Diociaiuti M, Giansanti L, Petaccia M, Bešker N, Mancini G (2016) Molecular packing in langmuir monolayers composed of a phosphatidylcholine and a pyrene lipid. J Phys Chem B 120(6):1126–1133. doi: 10.1021/acs.jpcb.5b11836 CrossRefPubMedGoogle Scholar
  11. Gregoris E, Stevanato R (2010) Correlations between polyphenolic composition and antioxidant activity of Venetian propolis. Food Chem Toxicol 48(1):76–82. doi: 10.1016/j.fct.2009.09.018 CrossRefPubMedGoogle Scholar
  12. Hamasaka T, Kumazawa S, Fujimoto T, Nakayama T (2004) Antioxidant activity and constituents of propolis collected in various areas of Japan. Food Sci Technol Res 10:86–92. doi: 10.1016/j.foodchem.2006.03.045 CrossRefGoogle Scholar
  13. Heimburg T (1998) Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim Biophys Acta Biomembr 1415(1):147–162. doi: 10.1016/S0005-2736(98)00189-8 CrossRefGoogle Scholar
  14. Heimburg T (2000) A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys J 78(3):1154–1165. doi: 10.1016/S0006-3495(00)76673-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefPubMedGoogle Scholar
  16. Ito AS, Rodrigues AP, Pazin WM, Barioni MB (2015) Fluorescence depolarization analysis of thermal phase transition in DPPC and DMPG aqueous dispersions. J Lumin 158:153–159. doi: 10.1016/j.jlumin.2014.09.051 CrossRefGoogle Scholar
  17. Khajeh A, Modarress H (2014) Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. Biophys Chem 187–188:43–50. doi: 10.1016/j.bpc.2014.01.004 CrossRefPubMedGoogle Scholar
  18. Kimoto T, Arai S, Kohguchi M, Aga M, Nomura Y, Micallef M, Mito K (1998) Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect Prev 22(6):506–515CrossRefPubMedGoogle Scholar
  19. Klauda JJB, Venable RMR, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. doi: 10.1021/jp101759q CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kučerka N, Nieh MP, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta Biomembr 1808(11):2761–2771. doi: 10.1016/j.bbamem.2011.07.022 CrossRefGoogle Scholar
  21. Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84(3):329–339. doi: 10.1016/S0308-8146(03)00216-4 CrossRefGoogle Scholar
  22. Laskar RA, Sk I, Roy N, Begum NA (2010) Antioxidant activity of Indian propolis and its chemical constituents. Food Chem 122(1):233–237. doi: 10.1016/j.foodchem.2010.02.068 CrossRefGoogle Scholar
  23. Lee BW, Faller R, Sum AK, Vattulainen I, Patra M, Karttunen M (2005) Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilib 228–229:135–140. doi: 10.1016/j.fluid.2005.03.002 CrossRefGoogle Scholar
  24. Lotfy M (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7(1):22–31. doi: 10.1007/s00114-011-0770-7 Google Scholar
  25. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. doi: 10.1002/jcc.21224 CrossRefPubMedGoogle Scholar
  26. Ota A, Abramovič H, Abram V, Poklar Ulrih N (2011) Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chem 125(4):1256–1261. doi: 10.1016/j.foodchem.2010.10.054 CrossRefGoogle Scholar
  27. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys Rev E 62(3):4000–4009. doi: 10.1103/PhysRevE.62.4000 CrossRefGoogle Scholar
  28. Pabst G, Koschuch R, Pozo-Navas B, Rappolt M, Lohner K, Laggner P (2003) Structural analysis of weakly ordered membrane stacks. J Appl Crystallogr 36(6):1378–1388. doi: 10.1107/S0021889803017527 CrossRefGoogle Scholar
  29. Pabst G, Grage SL, Danner-Pongratz S, Jing W, Ulrich AS, Watts A, Hickel A (2008) Membrane thickening by the antimicrobial peptide PGLa. Biophys J 95(12):5779–5788. doi: 10.1529/biophysj.108.141630 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Park YK, Alencar SM, Aguiar CL (2002) Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem 50:2502–2506CrossRefPubMedGoogle Scholar
  31. Parra GG, Borissevitch G, Borissevitch I, Ramos AP (2015) Quantum dot effects upon the interaction between porphyrins and phospholipids in cell membrane models. Eur Biophys J 45(3):219–227. doi: 10.1007/s00249-015-1088-8 CrossRefPubMedGoogle Scholar
  32. Paulino N, Abreu SRL, Uto Y, Koyama D, Nagasawa H, Hori H, Bretz WA (2008) Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur J Pharmacol 587(1–3):296–301. doi: 10.1016/j.ejphar.2008.02.067 CrossRefPubMedGoogle Scholar
  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi: 10.1002/jcc.20289 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Prenner EJ, Lewis RNAH, Kondejewski LH, Hodges RS, McElhaney RN (1999) Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Biochim Biophys Acta Biomembr 1417(2):211–223. doi: 10.1016/S0005-2736(99)00004-8 CrossRefGoogle Scholar
  35. Ramos AP, Pavani C, Iamamoto Y, Zaniquelli MED (2010) Porphyrin-phospholipid interaction and ring metallation depending on the phospholipid polar head type. J Colloid Interface Sci 350(1):148–154. doi: 10.1016/j.jcis.2010.06.021 CrossRefPubMedGoogle Scholar
  36. Righi AA, Negri G, Salatino A (2013) Comparative chemistry of propolis from eight brazilian localities. Evid Based Complement Altern Med. doi: 10.1155/2013/267878 Google Scholar
  37. Ristori S, Di Cola E, Lunghi C, Richichi B, Nativi C (2009) Structural study of liposomes loaded with a GM3 lactone analogue for the targeting of tumor epitopes. Biochim Biophys Acta Biomembr 1788(12):2518–2525. doi: 10.1016/j.bbamem.2009.10.005 CrossRefGoogle Scholar
  38. Romo TD, Grossfield A (2009) LOOS: an extensible platform for the structural analysis of simulations. In: 31st Annual International Conference of the IEEE EMBS (pp 2332–2335)Google Scholar
  39. Sawaya ACHF (2009) Composition and antioxidant activity of propolis from three species of Scaptotrigona stingless bees. J ApiProd ApiMed Sci 1(2):37–42. doi: 10.3896/IBRA.4.01.2.03 CrossRefGoogle Scholar
  40. Shaw DJ (1992) Introduction to colloid and surface chemistry. Elsevier, Amsterdam. doi: 10.1016/B978-0-08-050910-5.50016-5 Google Scholar
  41. Shimizu K, Ashida H, Matsuura Y, Kanazawa K (2004) Antioxidative bioavailability of artepillin C in Brazilian propolis. Arch Biochem Biophys 424(2):181–188. doi: 10.1016/j.abb.2004.02.021 CrossRefPubMedGoogle Scholar
  42. Suwalsky M, Jemiola-Rzeminska M, Altamirano M, Villena F, Dukes N, Strzalka K (2015) Interactions of the antiviral and antiparkinson agent amantadine with lipid membranes and human erythrocytes. Biophys Chem 202:13–20. doi: 10.1016/j.bpc.2015.04.002 CrossRefPubMedGoogle Scholar
  43. Tovani CB, de Souza JFV, de Cavallini T, Demets GJF, Ito A, Barioni MB, Zaniquelli MED (2013) Comparison between cucurbiturils and β-cyclodextrin interactions with cholesterol molecules present in Langmuir monolayers used as a biomembrane model. Colloids Surf B 111:398–406CrossRefGoogle Scholar
  44. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi: 10.1002/jcc.21367 PubMedPubMedCentralGoogle Scholar
  45. Vermeer LS, de Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J EBJ 36(8):919–931. doi: 10.1007/s00249-007-0192-9 CrossRefPubMedGoogle Scholar
  46. Wesołowska O, Gąsiorowska J, Petrus J, Czarnik-Matusewicz B, Michalak K (2014) Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Biochim Biophys Acta (BBA) Biomembr 1838(1):173–184. doi: 10.1016/j.bbamem.2013.09.009 CrossRefGoogle Scholar
  47. Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23(3):817–827. doi: 10.1023/B:JOEC.0000006413.98507.55 CrossRefGoogle Scholar
  48. Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33(31):2451–2468. doi: 10.1002/jcc.23067 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2016

Authors and Affiliations

  • Wallance Moreira Pazin
    • 1
    • 4
  • Danilo da Silva Olivier
    • 1
    • 4
  • Neus Vilanova
    • 2
  • Ana Paula Ramos
    • 3
  • Ilja Karina Voets
    • 2
    • 4
  • Ademilson Espencer Egea Soares
    • 5
  • Amando Siuiti Ito
    • 1
  1. 1.Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Macromolecular and Organic Chemistry, Physical Chemistry & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  4. 4.Dutch Polymer Institute (DPI)EindhovenThe Netherlands
  5. 5.Department of Genetics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations