European Biophysics Journal

, Volume 46, Issue 1, pp 1–24 | Cite as

Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials

Review

Abstract

Herbs and traditional medicines have been applied for thousands of years, but researchers started to study their mode of action at the molecular, cellular and tissue levels only recently. Nowadays, just like in ancient times, natural compounds are still determining factors in remedies. To support this statement, the recently won Nobel Prize for an anti-malaria agent from the plant sweet wormwood, which had been used to effectively treat the disease, could be mentioned. Among natural compounds and traditional Chinese medicines, the green tea polyphenol epigallocatechin gallate (EGCg) is one of the most studied active substances. In the present review, we summarize the molecular scale interactions of proteins and EGCg with special focus on its limited stability and antioxidant properties. We outline the observed biophysical effects of EGCg on various cell lines and cultures. The alteration of cell adhesion, motility, migration, stiffness, apoptosis, proliferation as well as the different impacts on normal and cancer cells are all reviewed. We also handle the works performed using animal models, microbes and clinical trials. Novel ways to develop its utilization for therapeutic purposes in the future are discussed too, for instance, using nanoparticles and green tea polyphenols together to cure illnesses and the combination of EGCg and anticancer compounds to intensify their effects. The limitations of the employed experimental models and criticisms of the interpretation of the obtained experimental data are summarized as well.

Keywords

EGCg Polyphenol Cell adhesion Nanoparticles Anticancer effects Proteins 

References

  1. Ahmad N, Gupta S, Mukhtar H (2000) Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 376:338–346. doi:10.1006/abbi.2000.1742 (and the references therein) CrossRefPubMedGoogle Scholar
  2. Anand PK, Kaul D, Sharma M (2006) Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int J Biochem Cell Biol 38:600–609. doi:10.1016/j.biocel.2005.10.021 (and the references therein) CrossRefPubMedGoogle Scholar
  3. Byun EH, Omura T, Yamada K, Tachibana H (2011) Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett 585:814–820. doi:10.1016/j.febslet.2011.02.010 (and the references therein) CrossRefPubMedGoogle Scholar
  4. Chan C-M, Huang J-H, Chiang H-S et al (2010) Effects of (−)-epigallocatechin gallate on RPE cell migration and adhesion. Mol Vis 16:586–595PubMedPubMedCentralGoogle Scholar
  5. Chandrashekaran IR, Adda CG, Macraild CA et al (2012) EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2. NIH Public Access 513:153–157. doi:10.1016/j.abb.2011.07.008.EGCG (and the references therein) Google Scholar
  6. Chung JE, Tan S, Gao SJ et al (2014) Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat Nanotechnol 9:907–912. doi:10.1038/nnano.2014.208 CrossRefPubMedPubMedCentralGoogle Scholar
  7. D’Agostino EM, Rossetti D, Atkins D et al (2012) Interaction of tea polyphenols and food constituents with model gut epithelia: the protective role of the mucus gel layer. J Agric Food Chem 60:3318–3328. doi:10.1021/jf205111k CrossRefPubMedGoogle Scholar
  8. Das S, Tanwar J, Hameed S et al (2014) Antimicrobial potential of epigallocatechin-3-gallate (EGCG): a green tea polyphenol. J Biochem Pharmacol Res 2:167–174 (and the references therein) Google Scholar
  9. Davies HS, Pudney PD, Georgiades P et al (2014) Reorganisation of the salivary mucin network by dietary components: insights from green tea polyphenols. PLoS One 9:e108372. doi:10.1371/journal.pone.0108372 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davison CA, Durbin SM, Thau MR et al (2013) Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 73:3704–3715. doi:10.1158/0008-5472.CAN-12-2482 CrossRefPubMedGoogle Scholar
  11. de Pace RCC, Liu X, Sun M et al (2013) Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res 23:187–196. doi:10.3109/08982104.2013.788023 CrossRefPubMedGoogle Scholar
  12. Ding J, Kong X, Yao J et al (2012) Core–shell mesoporous silica nanoparticles improve HeLa cell growth and proliferation inhibition by (−)-epigallocatechin-3-gallate by prolonging the half-life. J Mater Chem 22:19926. doi:10.1039/c2jm32271d CrossRefGoogle Scholar
  13. Dube A, Nicolazzo JA, Larson I (2010) Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur J Pharm Sci 41:219–225. doi:10.1016/j.ejps.2010.06.010 CrossRefPubMedGoogle Scholar
  14. Dufresne CJ, Farnworth ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12:404–421. doi:10.1016/S0955-2863(01)00155-3 (and the references therein) CrossRefPubMedGoogle Scholar
  15. El-Schish Z, Mölder A, Sebesta M et al (2010) Digital holographic microscopy—innovative and non-destructive analysis of living cells. In: Microscopy: science, technology, applications and education, pp 1055–1062Google Scholar
  16. Fatima Z, Hameed S, Islam N (2012) expression of Mycobacterium tuberculosis 85B and proinflammatory TNF-α in human monocytes. Int J Sci Pub 2:1–6Google Scholar
  17. Fujiki H, Sueoka E, Watanabe T, Suganuma M (2014) Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J Cancer Res Clin Oncol 141:1511–1522. doi:10.1007/s00432-014-1899-5 (and the references therein) CrossRefPubMedGoogle Scholar
  18. Fujimura Y, Umeda D, Yano S et al (2007) The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 364:79–85. doi:10.1016/j.bbrc.2007.09.095 CrossRefPubMedGoogle Scholar
  19. Fujimura Y, Umeda D, Yamada K, Tachibana H (2008) The impact of the 67 kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch Biochem Biophys 476:133–138. doi:10.1016/j.abb.2008.03.002 (and the references therein) CrossRefPubMedGoogle Scholar
  20. Fujimura Y, Sumida M, Sugihara K et al (2012) Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS One. doi:10.1371/journal.pone.0037942 Google Scholar
  21. Georgiades P, Pudney PD, Rogers S et al (2014) Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PLoS One 9:e105302. doi:10.1371/journal.pone.0105302 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gu J, Makey KL, Tucker KB et al (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 5:1–10. doi:10.1186/2045-824X-5-9 CrossRefGoogle Scholar
  23. Haratifar S, Meckling KA, Corredig M (2014) Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J Dairy Sci 97:672–678. doi:10.3168/jds.2013-7263 CrossRefPubMedGoogle Scholar
  24. Hayakawa S, Saeki K, Sazuka M et al (2001) Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun 285:1102–1106. doi:10.1006/bbrc.2001.5293 CrossRefPubMedGoogle Scholar
  25. Hellmann JK, Münter S, Wink M, Frischknecht F (2010) Synergistic and additive effects of epigallocatechin gallate and digitonin on Plasmodium sporozoite survival and motility. PLoS One 5:1–7. doi:10.1371/journal.pone.0008682 Google Scholar
  26. Hirun S, Roach PD (2011) A study of stability of (−)-epigallocatechin gallate (EGCG) from green tea in a frozen product. Int Food Res J 18:1261–1264Google Scholar
  27. Hong J, Lu H, Meng X et al (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells stability, cellular uptake, biotransformation, and efflux of tea polyphenol. Cancer Res 62:7241–7246 (and the references therein) PubMedGoogle Scholar
  28. Horvath R, McColl J, Yakubov GE, Ramsden JJ (2008) Structural hysteresis and hierarchy in adsorbed glycoproteins. J Chem Phys 129:1–5. doi:10.1063/1.2968127 CrossRefGoogle Scholar
  29. Hou Z, Sang S, You H et al (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65:8049–8056. doi:10.1158/0008-5472.CAN-05-0480 (and the references therein) CrossRefPubMedGoogle Scholar
  30. Hu B, Ting Y, Yang X et al (2012) Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun 48:2421. doi:10.1039/c2cc17295j CrossRefGoogle Scholar
  31. Hu F, Wei F, Wang Y et al (2015) EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J Pharmacol Sci 128:27–34. doi:10.1016/j.jphs.2015.04.003 CrossRefPubMedGoogle Scholar
  32. Hudson SA, Ecroyd H, Dehle FC et al (2009) (−)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol 392:689–700. doi:10.1016/j.jmb.2009.07.031 CrossRefPubMedGoogle Scholar
  33. Ishii T, Ichikawa T, Minoda K et al (2011) Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75:100–106. doi:10.1271/bbb.100600 CrossRefPubMedGoogle Scholar
  34. Khalfaoui T, Groulx J-F, Sabra G et al (2013) Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells. PLoS One 8:e74337. doi:10.1371/journal.pone.0074337 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim S, Lee MJ, Hong J et al (2000) Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 37:41–48. doi:10.1207/S15327914NC3701_5 (and the references therein) CrossRefPubMedGoogle Scholar
  36. Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195. doi:10.1016/j.redox.2013.12.022 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kiss A, Bécsi B, Kolozsvári B et al (2013) Epigallocatechin-3-gallate and penta-O-galloyl-β-d-glucose inhibit protein phosphatase-1. FEBS J 280:612–626. doi:10.1111/j.1742-4658.2012.08498.x CrossRefPubMedGoogle Scholar
  38. Klein EA, Thompson IM Jr, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306:1549–1556CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220. doi:10.1038/nrd1657 (and the references therein) CrossRefPubMedGoogle Scholar
  40. Lambert JD, Lee M-J, Diamond L et al (2006) Dose dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 34:8–11. doi:10.1124/dmd.104.003434 CrossRefPubMedGoogle Scholar
  41. Landis-Piwowar K, Chen D, Foldes R et al (2013) Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009–present). Expert Opin Ther Pat 23:189–202. doi:10.1517/13543776.2013.743993 (and the references therein) CrossRefPubMedGoogle Scholar
  42. Li W, Zhu S, Li J et al (2011) EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol 81:1152–1163. doi:10.1016/j.bcp.2011.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liang X, Wang J, Zhang X, Fang Y (2015) Label-free cell phenotypic identification of active compounds in traditional Chinese medicines. In: Fang Y (ed) Label-free biosensor methods in drug discovery. Springer, New York, pp 233–252Google Scholar
  44. Lo HM, Hung CF, Huang YY, Bin WuW (2007) Tea polyphenols inhibit rat vascular smooth muscle cell adhesion and migration on collagen and laminin via interference with cell–ECM interaction. J Biomed Sci 14:637–645. doi:10.1007/s11373-007-9170-6 CrossRefPubMedGoogle Scholar
  45. Lu LY, Ou N, Lu Q-B (2013) Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 3:3169. doi:10.1038/srep03169 PubMedPubMedCentralGoogle Scholar
  46. Lu Y-C, Luo P-C, Huang C-W et al (2014) Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle–cell interaction. Nanoscale 6:10297–10306. doi:10.1039/c4nr00617h CrossRefPubMedGoogle Scholar
  47. Luo X, Guan R, Chen X et al (2014) Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells. Nanoscale Res Lett 9:291. doi:10.1186/1556-276X-9-291 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mandel SA, Amit T, Weinreb O et al (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14:352–365. doi:10.1111/j.1755-5949.2008.00060.x CrossRefPubMedGoogle Scholar
  49. McColl J, Horvath R, Aref A et al (2009) Polyphenol control of cell spreading on glycoprotein substrata. J Biomater Sci Polym Ed 20:841–851. doi:10.1163/156856209X427023 CrossRefPubMedGoogle Scholar
  50. McColl J, Horvath R, Yakubov GE, Ramsden JJ (2016) The adsorption of EGCG–mucin complexes on biomimetic surfaces. 1–18 (to appear)Google Scholar
  51. Melgarejo E, Medina MÁ, Sánchez-Jiménez F, Urdiales JL (2009) Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro. Br J Pharmacol 158:1705–1712. doi:10.1111/j.1476-5381.2009.00452.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603. doi:10.3390/ijms12095592 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mizooku Y, Yoshikawa M, Tsuneyoshi T, Arakawa R (2003) Analysis of oxidized epigallocatechin gallate by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 17:1915–1918. doi:10.1002/rcm.1135 CrossRefPubMedGoogle Scholar
  54. Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71:1698–1702 (and the references therein) Google Scholar
  55. Nelson J, McFerran NV, Pivato G et al (2008) The 67 kDa laminin receptor: structure, function and role in disease. Biosci Rep 28:33–48. doi:10.1042/BSR20070004 (and the references therein) CrossRefPubMedGoogle Scholar
  56. Omenn GS, Goodman GE, Thornquist MD et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155. doi:10.1056/NEJM199605023341802 CrossRefPubMedGoogle Scholar
  57. Orgovan N, Peter B, Bősze S et al (2014) Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 4:4034CrossRefPubMedPubMedCentralGoogle Scholar
  58. Patil PR, Gemma S, Campiani G, Craig AG (2011) Broad inhibition of plasmodium falciparum cytoadherence by (+)-epigallocatechin gallate. Malar J 10:348. doi:10.1186/1475-2875-10-348 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Patra SK, Rizzi F, Silva A et al (2014) Molecular targets of (−)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 59:217–235. doi:10.1056/NEJMra1313875 (and the references therein) Google Scholar
  60. Persson J, Mölder A, Pettersson S, Alm K (2010) Cell motility studies using digital holographic microscopy. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 1063–1072Google Scholar
  61. Peter B, Nador J, Juhasz K et al (2015) Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections. J Biomed Opt 20:067002. doi:10.1117/1.JBO.20.6.067002 CrossRefPubMedGoogle Scholar
  62. Punathil T, Tollefsbol TO, Katiyar SK (2008) EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem Biophys Res Commun 375:162–167. doi:10.1016/j.bbrc.2008.07.157 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sazuka M, Itoi T, Suzuki Y et al (1996) Evidence for the interaction between (−)-epigallocatechin gallate and human plasma proteins fibronectin, fibrinogen, and histidine-rich glycoprotein. Biosci Biotechnol Biochem 60:1317–1319CrossRefPubMedGoogle Scholar
  64. Scarpa E-S, Ninfali P (2015) Phytochemicals as innovative therapeutic tools against cancer stem cells. Int J Mol Sci 16:15727–15742. doi:10.3390/ijms160715727 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sharma SK, Kumar G, Kapoor M, Surolia A (2008) Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis. Biochem Biophys Res Commun 368:12–17. doi:10.1016/j.bbrc.2007.10.191 (and the references therein) CrossRefPubMedGoogle Scholar
  66. Shukla R, Chanda N, Zambre A et al (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci 109:12426–12431. doi:10.1073/pnas.1121174109 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Siddiqui IA, Asim M, Hafeez BB et al (2011) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25:1198–1207. doi:10.1096/fj.10-167924 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821. doi:10.1016/j.bcp.2011.07.093 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  69. Song Q, Li D, Zhou Y et al (2014a) Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomed 9:2157–2165CrossRefGoogle Scholar
  70. Song S, Huang Y-W, Tian Y et al (2014b) Mechanism of action of (–)-epigallocatechin-3-gallate: auto-oxidation-dependent activation of extracellular signal-regulated kinase 1/2 in Jurkat cells. Chin J Nat Med 12:654–662. doi:10.1016/S1875-5364(14)60100-X PubMedGoogle Scholar
  71. Sugisawa A, Umegaki K (2002) Physiological concentrations of (−)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. J Nutr 132:1836–1839PubMedGoogle Scholar
  72. Suzuki Y, Isemura M (2001) Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin. Cancer Lett 173:15–20. doi:10.1016/S0304-3835(01)00685-1 CrossRefPubMedGoogle Scholar
  73. Suzuki Y, Isemura M (2013) Binding interaction between (−)-epigallocatechin gallate causes impaired spreading of cancer cells on fibrinogen. Biomed Res 34:301–308. doi:10.2220/biomedres.34.301 (and the references therein) CrossRefPubMedGoogle Scholar
  74. Tachibana H (2011) Green tea polyphenol sensing. Proc Jpn Acad Ser B 87:66–80. doi:10.2183/pjab.87.66 (and the references therein) CrossRefGoogle Scholar
  75. Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380–381. doi:10.1038/nsmb743 CrossRefPubMedGoogle Scholar
  76. Takahashi A, Watanabe T, Mondal A et al (2014) Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate. Biochem Biophys Res Commun 443:1–6. doi:10.1016/j.bbrc.2013.10.094 CrossRefPubMedGoogle Scholar
  77. Tao L, Park J-Y, Lambert JD (2015) Differential prooxidative effects of the green tea polyphenol, (−)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Mol Nutr Food Res 59:203–211. doi:10.1002/mnfr.201400485 CrossRefPubMedGoogle Scholar
  78. Tran PLCHB, Kim S-A, Choi HS et al (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276. doi:10.1186/1471-2407-10-276 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tudoran O, Soritau O, Balacescu O et al (2012) Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J Cell Mol Med 16:520–530. doi:10.1111/j.1582-4934.2011.01346.x CrossRefPubMedPubMedCentralGoogle Scholar
  80. Umeda D, Yano S, Yamada K, Tachibana H (2008a) Involvement of 67-kDa laminin receptor-mediated myosin phosphatase activation in antiproliferative effect of epigallocatechin-3-O-gallate at a physiological concentration on Caco-2 colon cancer cells. Biochem Biophys Res Commun 371:172–176. doi:10.1016/j.bbrc.2008.04.041 CrossRefPubMedGoogle Scholar
  81. Umeda D, Yano S, Yamada K, Tachibana H (2008b) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 283:3050–3058. doi:10.1074/jbc.M707892200 (and the references therein) CrossRefPubMedGoogle Scholar
  82. Vaidyanathan JB, Walle T (2003) Cellular uptake and efflux of the tea flavonoid (−)epicatechin-3-gallate in the human intestinal cell line Caco-2. J Pharmacol Exp Ther 307:745–752. doi:10.1124/jpet.103.054296.genesis (and the references therein) CrossRefPubMedGoogle Scholar
  83. Wang P, Henning SM, Heber D (2010) Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. doi:10.1371/journal.pone.0010202 Google Scholar
  84. Wang S, Su R, Nie S et al (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25:363–376. doi:10.1016/j.jnutbio.2013.10.002 (and the references therein) CrossRefPubMedGoogle Scholar
  85. Weber AA, Neuhaus T, Skach RA et al (2004) Mechanisms of the inhibitory effects of epigallocatechin-3 gallate on platelet-derived growth factor-BB-induced cell signaling and mitogenesis. FASEB J 18:128–130. doi:10.1096/fj.03-0007fje (and the references therein) PubMedGoogle Scholar
  86. Yang CS, Chen L, Lee M-J et al (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomark 7:351–354Google Scholar
  87. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439. doi:10.1038/nrc2641 (and the references therein) CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang Q, Tang X, Lu Q et al (2006) Green tea extract and (−)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 5:1227–1238. doi:10.1158/1535-7163.MCT-05-0490 CrossRefPubMedGoogle Scholar
  89. Zhang X, Deng H, Xiao Y et al (2014) Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medical plants. RSC Adv 4:26368. doi:10.1039/c4ra03609c CrossRefGoogle Scholar
  90. Zhao Y, Chen L, Yakubov G et al (2012) Experimental and theoretical studies on the binding of epigallocatechin gallate to purified porcine gastric mucin. J Phys Chem B 116:13010–13016CrossRefPubMedGoogle Scholar
  91. Zhao Y, Chen L, Han L et al (2013) Molecular and thermodynamic basis for EGCG–keratin interaction-part II: experimental investigation. AIChE J 59:4824–4827. doi:10.1002/aic.14221 CrossRefGoogle Scholar
  92. Zheng FJ, Shi L, Yang J et al (2012) Effect of tea polyphenols on the adhesion of highly metastatic human lung carcinoma cell lines to endothelial cells in vitro. Asian Pac J Cancer Prev 13:3751–3755. doi:10.7314/APJCP.2012.13.8.3751 CrossRefPubMedGoogle Scholar
  93. Zhou Q, Chiang H, Portocarrero C et al (2003) Investigating the stability of EGCg in aqueous media. Curr Sep 20:83–86Google Scholar

Copyright information

© European Biophysical Societies' Association 2016

Authors and Affiliations

  1. 1.Doctoral School of Molecular- and NanotechnologiesUniversity of PannoniaVeszprémHungary
  2. 2.Nanobiosensorics Group, Institute for Technical Physics and Materials ScienceHungarian Academy of SciencesBudapestHungary
  3. 3.MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of Sciences, Eötvös Loránd UniversityBudapest 112Hungary

Personalised recommendations