Skip to main content
Log in

Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The hammerhead ribozyme (HHR) is one of smallest catalytic RNAs, composed of a catalytic core and three stems; it undergoes self-cleavage in the presence of divalent magnesium ions (Mg2+) or other cations. It is hypothesized that the function and metabolism of RNAs might be regulated via interaction with lipid membranes in the prebiotic world. Using synthetic RNAs that model the core fragment of hammerhead ribozyme-like assembly (HHR-a), we investigated the enhancement of the self-cleavage reaction of HHR-a induced by the liposomes, both in the absence and presence of Mg2+. The HHR-a activity was enhanced by 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DPPC) = 8/2 liposome with Mg2+, while other liposomes did not so significant. In the presence of DOPE/DPPC = 8/2 liposome, the HHR-a activity was observed without Mg2+, revealed by the conformational change of the HHR inhibitor complex induced by the interaction with the liposome. The UV resonance Raman spectroscopy analysis investigated the interaction between lipid molecules and nucleobases, suggesting that the ethanolamine group of DOPE molecules are assumed to act as monovalent cations alternative to Mg2+, depending on the liposome membrane characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HHR:

Hammerhead ribozyme

HHR-a:

Hammerhead ribozyme-like RNA assembly

HHR–IC:

HHR–inhibitor complex

MALDI TOF/MS:

Matrix-assisted laser desorption/ionization time-of-flight/mass spectrometry

CD:

Circular dichroism

UVRR:

UV resonance Raman

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DPPE:

1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPH:

1,6-Diphenyl-1,3,5-hexatriene

Laurdan:

6-Lauroyl-2-dimethylaminonaphthalene

TNS:

2-(p-Toluidino)naphthalene-6-sulfonate

SGI:

SYBR Green I

References

  • Ausländer S, Ketzer P, Hartig JS (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol BioSyst 6:807–814

    Article  PubMed  CAS  Google Scholar 

  • Bassi GS, Murchie AIH, Lilley DMJ (1996) The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation. RNA 2:756–768

    PubMed  PubMed Central  CAS  Google Scholar 

  • Billinghurst BE, Oladepo SA, Loppnow GR (2009) pH-Dependent UV resonance Raman spectra of cytosine and uracil. J Phys Chem B 113:7392–7397

    Article  PubMed  CAS  Google Scholar 

  • Boots JL, Canny MD, Azimi E, Pardi A (2008) Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme. RNA 14:2212–2222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmona P, Rodriguez-Casado A, Molina M (1999) Conformational structure and bindingmode of glyceraldehydes-3-phosphate dehydrogenase to tRNA studied by Raman and CD spectroscopy. Biochim Biophys Acta 1432:222–233

    Article  PubMed  CAS  Google Scholar 

  • Chen IA (2015) Replicating towards complexity. Nat Chem 7:191–192

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Salehi-Ashtiani K, Szostak JW (2005) RNA catalysis in model protocell vesicles. J Am Chem Soc 127:13213–13219

    Article  PubMed  CAS  Google Scholar 

  • Curtis EA, Bartel DP (2001) The hammerhead cleavage reaction in monovalent cations. RNA 7:546–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • De la Peña M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari D, Peracchi A (2002) A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe. Nucleic Acid Res 30:e112

    Article  PubMed  PubMed Central  Google Scholar 

  • Florián J, Baumruk V, Leszczyński J (1996) IR and Raman spectra, tautomeric stabilities, and scaled quantum mechanical force fields of protonated cytosine. J Phys Chem 100:5578–5589

    Article  Google Scholar 

  • Hammann C, Lilley DMJ (2002) Folding and activity of the hammerhead ribozyme. ChemBioChem 3:690–700

    Article  PubMed  CAS  Google Scholar 

  • Janas T, Janas T, Yarus M (2006) Specific RNA binding to ordered phospholipid bilayers. Nucleic Acid Res 34:2128–2136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  PubMed  CAS  Google Scholar 

  • Lanir A, Yu NT (1979) A Raman spectroscopic study of the interaction of divalent metal ions with adenine moiety of adenosine 5′-triphosphate. J Biol Chem 254:5882–5887

    PubMed  CAS  Google Scholar 

  • Lilley DMJ (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15:313–323

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Nagle JF (2004) Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys Rev E 69:1–4. article id:040901

    Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  • Mathlouthi M, Seuvre AM, Koenig JL (1983) FT-IR and laser-Raman spectra of d-ribose and 2-deoxy-d-erythro-pentose (“2-deoxy-d-ribose”). Carbohyd Res 122:31–47

    Article  CAS  Google Scholar 

  • Müller UF, Bartel DP (2008) Improved polymerase ribozyme efficiency on hydrophobic assemblies. RNA 14:552–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagatomo S, Nagai M, Kitagawa T (2011) A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions. J Am Chem Soc 133:10101–10110

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    Article  PubMed  CAS  Google Scholar 

  • Ricardo A, Szostak JW (2009) Origin of life on earth. Sci Am 301:54–61

    Article  PubMed  CAS  Google Scholar 

  • Riepe A, Beier H, Gross HJ (1999) Enhancement of RNA self-cleavage by micellar catalysis. FEBS Lett 457:193–199

    Article  PubMed  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Method 9:671–675

    Article  CAS  Google Scholar 

  • Singh JS (2012) FTIR and Raman spectra and fundamental frequencies of 5-halosubstituted uracils: 5-X-uracil (X = F, Cl, Br and I). Spectrochim Acta A 87:106–111

    Article  CAS  Google Scholar 

  • Strobel SA, Cochrane JC (2007) RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 11:636–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strulson CA, Molden RC, Keating CD, Bevilacqua PC (2012) RNA catalysis through compartmentalization. Nat Chem 4:941–946

    PubMed  CAS  Google Scholar 

  • Suga K, Umakoshi H (2013) Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method. Langmuir 29:4830–4837

    Article  PubMed  CAS  Google Scholar 

  • Suga K, Umakoshi H, Tomita H et al (2010) Liposomes destabilize tRNA during heat stress. Biotechnol J 5:526–529

    Article  PubMed  CAS  Google Scholar 

  • Suga K, Tanabe T, Tomita H et al (2011) Conformational change of single-stranded RNAs induced by liposome binding. Nucl Acid Res 39:8891–8900

    Article  CAS  Google Scholar 

  • Suga K, Tanabe T, Umakoshi H (2013) Heterogeneous cationic liposomes modified with 3β-{N-[(N′, N′-dimethylamino) ethyl] carbamoyl} cholesterol can induce partial conformational changes in messenger RNA and regulate translation in an Escherichia coli cell-free translation system. Langmuir 29:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Kasai Y, Mochizuki S et al (2004) Nature of the chemical bond formed with the structural metal ion at the A9/G10.1 motif derived from hammerhead ribozymes. J Am Chem Soc 126:744–752

    Article  PubMed  CAS  Google Scholar 

  • Tessera M (2009) Life began when evolution began: a lipidic vesicle-based scenario. Orig Life Evol Biosph 39:559–564

    Article  PubMed  CAS  Google Scholar 

  • Tsuji A, Yoshikawa K (2010) Real-time monitoring of RNA synthesis in a phospholipid-coated microdroplet as a live-cell model. ChemBioChem 11:351–357

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101

    Article  PubMed  CAS  Google Scholar 

  • Walde P, Umakoshi H, Stano P, Mavellid F (2014) Emergent proper-ties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem Commun 50:10177–10197

    Article  CAS  Google Scholar 

  • Wang S, Karbstein K, Paracchi A et al (1999) Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochem 38:14363–14378

    Article  CAS  Google Scholar 

  • Wieland M, Ausländer D, Fussenegger M (2012) Engineering of ribozyme-based riboswitches for mammalian cells. Methods 56:351–357

    Article  PubMed  CAS  Google Scholar 

  • Zhelyaskov V, Yue KT (1992) A Raman study of the binding of Fe(III) to ATP and AMP. Biochem J 287:561–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucl Acid Res 32:e103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toshinori Shimanouchi (Graduate School of Environmental Science, Okayama University) for his constructive comments. This work was supported by the Funding Program for Next Generation World-Leading Researchers of the Council for Science and Technology Policy (CSTP) (GR066), JSPS Grant-in-Aid for Scientific Research A (26249116), and JSPS Grant-in-Aid for Research Activity Start-up (25889039). One of the authors (K.S.) also expresses his gratitude for the Japan Society for the Promotion of Science (JSPS) and GCOE scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Umakoshi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suga, K., Tanaka, S. & Umakoshi, H. Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme. Eur Biophys J 45, 55–62 (2016). https://doi.org/10.1007/s00249-015-1076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1076-z

Keywords

Navigation