European Biophysics Journal

, Volume 44, Issue 1–2, pp 69–76 | Cite as

Capsaicin inhibits collagen fibril formation and increases the stability of collagen fibers

  • Sathiamurthi Perumal
  • Kriti Dubey
  • Rahul Badhwar
  • Kodimattan Joseph George
  • Rakesh Kumar Sharma
  • Ganesh Bagler
  • Balaraman Madhan
  • Karunakar Kar
Original Paper

Abstract

Capsaicin is a versatile plant product which has been ascribed several health benefits and anti-inflammatory and analgesic properties. We have investigated the effect of capsaicin on the molecular stability, self-assembly, and fibril stability of type-I collagen. It was found that capsaicin suppresses collagen fibril formation, increases the stability of collagen fibers in tendons, and has no effect on the molecular stability of collagen. Turbidity assay data show that capsaicin does not promote disassembly of collagen fibrils. However, capsaicin moderately protects collagen fibrils from enzymatic degradation. Computational studies revealed the functions of the aromatic group and amide region of capsaicin in the collagen–capsaicin interaction. The results may have significant implications for capsaicin-based therapeutics that target excess collagen accumulation-linked pathology, for example thrombosis, fibrosis, and sclerosis.

Keywords

Capsaicin Type-I collagen Tendons Triple-helix 

Abbreviations

CD

Circular dichroism

RTT

Rat tail tendon

Tm

Transition temperature

Notes

Acknowledgments

We thank the Indian Institute of Technology, Jodhpur, for research facilities. We are grateful to Central Leather Research Institute, Chennai, for laboratory support with some of the biophysical studies. Authors SP and BM are grateful for CSIR-YSA grants from CSIR (CSIR-CLRI Communication number 1122). Authors KK and GB thank the Indian Institute of Technology, Jodhpur, for the Seed Grant, and author KK is grateful for BRNS [No.37(1)/14/38/2014-BRNS/1357] funding support.

Supplementary material

249_2014_1002_MOESM1_ESM.pdf (840 kb)
Supplementary material 1 (PDF 839 kb)

References

  1. Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81PubMedCrossRefGoogle Scholar
  2. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Chapter 12 PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241CrossRefGoogle Scholar
  3. Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339PubMedCrossRefGoogle Scholar
  4. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cejas MA, Kinney WA, Chen C, Vinter JG, Almond HR Jr, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagenmimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci USA 105:8513–8518PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chandrakasan G, Torchia DA, Piez KA (1976) Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the non-helical ends in solution. J Biol Chem 251(19):6062–6067PubMedGoogle Scholar
  7. Clozel JP, Roberts AM, Hoffman JI, Coleridge HM, Coleridge JC (1985) Vagal chemoreflex coronary vasodilation evoked by stimulating pulmonary C-fibers in dogs. Circ Res 57(3):450–460PubMedCrossRefGoogle Scholar
  8. Fang JY, Fang CL, Hong CT, Chen HY, Lin TY, Wei HM (2001) Capsaicin and nonivamide as novel skin permeation enhancers for indomethacin. Eur J Pharm Sci 12(3):195–203PubMedCrossRefGoogle Scholar
  9. Farndale RW, Sixma JJ, Barnes MJ, de Groot PG (2004) The role of collagen in thrombosis and hemostasis. J Thromb Haemost 2(4):561–573PubMedCrossRefGoogle Scholar
  10. Frydas S, Varvara G, Murmura G, Saggini A, Caraffa A, Antinolfi P, Tete’ S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Speranza L, Pantalone A, Saggini R, Di Tommaso LM, Theoharides TC, Conti P, Pandolfi F (2013) Impact of capsaicin on mast cell inflammation. Int J Immunopathol Pharmacol 26(3):597–600PubMedGoogle Scholar
  11. Hayes AG, Skingle M, Tyers MB (1981) Effects of single doses of capsaicin on nociceptive thresholds in the rodent. Neuropharmacology 20(5):505–511PubMedCrossRefGoogle Scholar
  12. Hempenstall K, Nurmikko TJ, Johnson RW, A’Hern RP, Rice AS (2005) Analgesic therapy in postherpetic neuralgia: a quantitative systematic review. PLoS Med 2(7):e164PubMedCentralPubMedCrossRefGoogle Scholar
  13. Huang SP, Chen JC, Wu CC, Chen CT, Tang NY, Ho YT et al (2009) Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res 29(1):165–174PubMedGoogle Scholar
  14. Irwin JJ, Shoichet BK (2005) ZINC––a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182PubMedCentralPubMedCrossRefGoogle Scholar
  15. Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang Y, Brodsky B (2006) Self-association of collagen triple helix peptides into higher order structures. J Biol Chem 281:33283–33290PubMedCrossRefGoogle Scholar
  16. Kar K, Ibrar S, Nanda V, Getz TM, Kunapuli SP, Brodsky B (2009) Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48:7959–7968PubMedCentralPubMedCrossRefGoogle Scholar
  17. Katritzky AR, Xu YJ, Vakulenko AV, Wilcox AL, Bley KR (2000) Model compounds of caged capsaicin: design, synthesis, and photoreactivity. J Org Chem 68:9100–9104CrossRefGoogle Scholar
  18. Kielty CM, Grant ME (2002) The collagen family: structure assembly and organization in the extracellular matrix. Wiley, New York, pp 159–221Google Scholar
  19. Ko F, Diaz M, Smith P, Emerson E, Kim YJ, Krizek TJ, Robson MC (1998) Toxic effects of capsaicin on keratinocytes and fibroblasts. J Burn Care Rehabil 19(5):409–413PubMedCrossRefGoogle Scholar
  20. Kuznetsova N, Chi SL, Leikin S (1998) Sugars and polyols inhibit fibrillogenesis of type-I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry 37(34):11888–11895PubMedCrossRefGoogle Scholar
  21. Lafont A, Durand E, Samuel JL, Besse B, Addad F, Lévy BI, Desnos M, Guérot C, Boulanger CM (1999) Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation 100(10):1109–1115PubMedCrossRefGoogle Scholar
  22. Leikin S, Rau DC, Parsegian VA (1995) Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Biol 2(3):205–210PubMedCrossRefGoogle Scholar
  23. Leikin S, Parsegian VA, Yang W, Walrafen GE (1997) Raman spectral evidence for hydration forces between collagen triple helices. Proc Natl Acad Sci 94(21):11312–11317PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mehta A, Rao JR, Fathima NN (2014) Effect of ionic liquids on different hierarchical order of type-I collagen. Colloids Surf B 117:376–382CrossRefGoogle Scholar
  25. Mori A, Lehmann S, O’Kelly J, Kumagai T, Desmond JC, Pervan M, McBride WH, Kizaki M, Koeffler HP (2006) Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66(6):3222–3229PubMedCrossRefGoogle Scholar
  26. Plenz GA, Deng MC, Robenek H, Völker W (2003) Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 1–11Google Scholar
  27. Prado CM, da Rocha GZ, Leick-Maldonado EA, Starling CM, Capelozzi VL, Martins MA, Tibério IF (2011) Inactivation of capsaicin-sensitive nerves reduces pulmonary remodeling in guinea pigs with chronic allergic pulmonary inflammation. Braz J Med Biol Res 44(2):130–139PubMedCrossRefGoogle Scholar
  28. Prockop DJ, Fertala A (1998) Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides. Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem 273:15598–15604PubMedCrossRefGoogle Scholar
  29. Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593–595PubMedCrossRefGoogle Scholar
  30. Rich A, Crick FH (1961) The molecular structure of collagen. J Mol Biol 3:483–506PubMedCrossRefGoogle Scholar
  31. Ryan JN, Woessner JF (1971) Mammalian collagenase: direct demonstration in homogenates of involuting rat uterus. Biochem Biophys Res Commun 44(1):144–149PubMedCrossRefGoogle Scholar
  32. Sionkowska A (2000) Modification of collagen films by ultraviolet irradiation. Polym Degrad Stab 68(2):147–151CrossRefGoogle Scholar
  33. Tandan R, Lewis GA, Krusinski PB, Badger GB, Fries TJ (1992) Topical capsaicin in painful diabetic neuropathy. Controlled study with long-term follow-up. Diabetes Care 15:8–14PubMedCrossRefGoogle Scholar
  34. Usha R, Ramasami T (2009) Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochim Acta 59–66Google Scholar
  35. Wang JP, Hsu MF, Teng CM (1984) Antiplatelet activity of capsaicin. Thromb Res 36:497–507PubMedCrossRefGoogle Scholar
  36. Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447PubMedCrossRefGoogle Scholar
  37. Wutka A, Palagani V, Barat S, Chen X, El Khatib M, Götze J, Belahmer H, Zender S, Bozko P, Malek NP, Plentz RR (2014) Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One 9(4):e9560CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • Sathiamurthi Perumal
    • 2
  • Kriti Dubey
    • 1
  • Rahul Badhwar
    • 1
  • Kodimattan Joseph George
    • 1
  • Rakesh Kumar Sharma
    • 1
  • Ganesh Bagler
    • 1
  • Balaraman Madhan
    • 2
  • Karunakar Kar
    • 1
  1. 1.Center for Biologically Inspired System ScienceIndian Institute of Technology JodhpurJodhpurIndia
  2. 2.CSIR-Central Leather Research InstituteChennaiIndia

Personalised recommendations