European Biophysics Journal

, Volume 44, Issue 1–2, pp 27–36 | Cite as

Peptide-induced formation of a tethered lipid bilayer membrane on mesoporous silica

  • Maria WallinEmail author
  • Jae-Hyeok Choi
  • Seong Oh Kim
  • Nam-Joon Cho
  • Martin Andersson
Original Paper


Tethered bilayer lipid membranes (tBLMs) on solid supports have substantial advantages as models of artificial cell membranes for such biomedical applications as drug delivery and biosensing. Compared with untethered lipid membranes, tBLMs have more space between substrate and the bilayer and greater stability. The purpose of this work was to use these properties to fabricate and characterize a zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid tBLM containing 2 mol % 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-maleimide(poly(ethylene glycol))-2000 (DSPE-PEG2000-NHS) lipid tethers on a 3-aminopropyltrimethoxysilane-modified mesoporous silica substrate. A quartz crystal microbalance with dissipation monitoring was used to monitor the process of vesicle adsorption and tBLM self-assembly, and atomic force microscopy was performed to characterize the structural properties of the tBLM obtained. Whereas tether-containing lipid vesicles ruptured neither spontaneously nor as a result of osmotic shock, introduction of an amphipathic α-helical (AH) peptide induced vesicle rupture and subsequent tBLM formation. Taken together, our findings suggest that the AH peptide is an efficient means of rupturing vesicles of both simple and complex composition, and is, therefore, useful for formation of tBLMs on solid and mesoporous materials for applications in biotechnology.


Mesoporous Tethered lipid bilayer membrane AH peptide Vesicle fusion 



Financial support was obtained from the Swedish Research Council, VR 2008-3660, the Materials Area of Advance Chalmers University of Technology, the National Research Foundation (NRF-NRFF2011-01), and the National Medical Research Council (NMRC/CBRG/0005/2012). The authors thank Sylvio Hass for assistance with SAXS measurements performed at Maxlab (Lund, Sweden) on beamline I911.

Supplementary material

249_2014_998_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 44 kb)


  1. Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) General predictive syntheses of cubic, hexagonal, and lamellar silica and titania meso structured thin films. Chem Mater 14:3284–3294CrossRefGoogle Scholar
  2. Alexandridis P, Olsson U, Lindman B (1995) Self-assembly of amphiphilic block-copolymers—the (EO)(13)(PO)(30)(EO)(13)-water-p-xylene system. Macromolecules 28:7700–7710CrossRefGoogle Scholar
  3. Andersson M, Keizer HM, Zhu CY, Fine D, Dodabalapur A, Duran RS (2007) Detection of single ion channel activity on a chip using tethered bilayer membranes. Langmuir 23:2924–2927PubMedCrossRefGoogle Scholar
  4. Andersson M, Okeyo G, Wilson D, Keizer H, Moe P, Blount P, Fine D, Dodabalapur A, Duran RS (2008) Voltage-induced gating of the mechanosensitive MscL ion channel reconstituted in a tethered lipid bilayer membrane. Biosens Bioelectron 23:919–923PubMedCrossRefGoogle Scholar
  5. Arnold K, Zschoernig O, Barthel D, Herold W (1990) Exclusion of poly (ethylene glycol) from liposome surfaces. Biochim Biophys Acta 1022:303–310PubMedCrossRefGoogle Scholar
  6. Atanasov V, Knorr N, Duran RS, Ingebrandt S, Offenhausser A, Knoll W, Koper I (2005) Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J 89:1780–1788PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cho NJ, Cho SJ, Cheong KH, Glenn JS, Frank CW (2007a) Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J Am Chem Soc 129:10050–10051PubMedCrossRefGoogle Scholar
  8. Cho NJ, Cho SJ, Hardesty JO, Glenn JS, Frank CW (2007b) Creation of lipid partitions by deposition of amphipathic viral peptides. Langmuir 23:10855–10863PubMedCrossRefGoogle Scholar
  9. Cho NJ, Kanazawa KK, Glenn JS, Frank CW (2007c) Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface. Anal Chem 79:7027–7035PubMedCrossRefGoogle Scholar
  10. Cho NJ, Dvory-Sobol H, Xiong A, Cho SJ, Frank CW, Glenn JS (2009a) Mechanism of an amphipathic alpha-helical peptide’s antiviral activity involves size-dependent virus particle lysis. ACS Chem Biol 4:1061–1067PubMedCrossRefGoogle Scholar
  11. Cho NJ, Wang G, Edvardsson M, Glenn JS, Hook F, Frank CW (2009b) Alpha-helical peptide induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry. Anal Chem 81:4752–4761PubMedCrossRefGoogle Scholar
  12. Cho NJ, Frank CW, Kasemo B, Hook F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5:1096–1106PubMedCrossRefGoogle Scholar
  13. Cho NJ, Jackman JA, Liu M, Frank CW (2011) pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide. Langmuir 27:3739–3748PubMedCrossRefGoogle Scholar
  14. Claesson M, Cho N-J, Frank CW, Andersson M (2010) Vesicle adsorption on mesoporous silica and titania. Langmuir 26:16630–16633PubMedCrossRefGoogle Scholar
  15. Claesson M, Frost R, Svedhem S, Andersson M (2011) Pore spanning lipid bilayers on mesoporous silica having varying pore size. Langmuir 27:8974–8982PubMedCrossRefGoogle Scholar
  16. Claesson M, Ahmadi A, Fathali HM, Andersson M (2012) Improved QCM-D signal-to-noise ratio using mesoporous silica and titania. Sens Actuators B: Chem 166–167:526–534CrossRefGoogle Scholar
  17. Coutable A, Thibault C, Chalmeau J, Francois JM, Vieu C, Noireaux V, Trevisiol E (2014) Preparation of tethered-lipid bilayers on gold surfaces for the incorporation of integral membrane proteins synthesized by cell-free expression. Langmuir 30:3132–3141PubMedCrossRefGoogle Scholar
  18. Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J (2007) Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir 23:3898–3905PubMedCrossRefGoogle Scholar
  19. Du H, Chandaroy P, Hui SW (1997) Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta-Biomembr 1326:236–248CrossRefGoogle Scholar
  20. Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344CrossRefGoogle Scholar
  21. Hardy GJ, Nayak R, Alam SM, Shapter JG, Heinrich F, Zauscher S (2012) Biomimetic supported lipid bilayers with high cholesterol content formed by alpha-helical peptide-induced vesicle fusion. J Mater Chem 22:19506–19513PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804PubMedCrossRefGoogle Scholar
  23. Jackman JA, Cho N-J (2012) Model membrane platforms for biomedicine: case study on antiviral drug development. Biointerphases 7:18PubMedCrossRefGoogle Scholar
  24. Jackman JA, Knoll W, Cho NJ (2012) Biotechnology applications of tethered lipid bilayer membranes. Materials 5:2637–2657CrossRefGoogle Scholar
  25. Jackman JA, Choi J-H, Zhdanov VP, Cho N-J (2013) Influence of osmotic pressure on adhesion of lipid vesicles to solid supports. Langmuir: ACS J Surf Colloids 29:11375–11384CrossRefGoogle Scholar
  26. Janshoff A, Steinem C (2006) Transport across artificial membranes–an analytical perspective. Anal Bioanal Chem 385:433–451PubMedCrossRefGoogle Scholar
  27. Johnson SJ, Bayerl TM, McDermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E (1991) Structure of an adsorbed dimyristoylphosohatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59:289–294PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jonsson P, Jonsson MP, Tegenfeldt JO, Hook F (2008) A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J 95:5334–5348PubMedCentralPubMedCrossRefGoogle Scholar
  29. Junghans A, Koper I (2010) Structural analysis of tethered bilayer lipid membranes. Langmuir 26:11035–11040PubMedCrossRefGoogle Scholar
  30. Kaufmann S, Papastavrou G, Kumar K, Textor M, Reimhult E (2009) A detailed investigation of the formation kinetics and layer structure of poly(ethylene glycol) tether supported lipid bilayers. Soft Matter 5:2804–2814CrossRefGoogle Scholar
  31. Keizer MH, Dorvel RB, Andersson M, Fine D, Price BR, Long RJ, Dodabalapur A, Köper I, Knoll W, Anderson AVP, Duran SR (2007) Functional ion channels in tethered bilayer membrane arrays; implications for biosensors. Chembiochem: Eur J Chem Biol 8:1246–1250CrossRefGoogle Scholar
  32. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402PubMedCentralPubMedCrossRefGoogle Scholar
  33. Keller CA, Glasmastar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84:5443–5446PubMedCrossRefGoogle Scholar
  34. Knaapila M, Svensson C, Barauskas J, Zackrisson M, Nielsen SS, Toft KN, Vestergaard B, Arleth L, Olsson U, Pedersen JS, Cerenius Y (2009) A new small-angle X-ray scattering set-up on the crystallography beamline I711 at MAX-lab. J Synchrot Radiat 16:498–504CrossRefGoogle Scholar
  35. Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci 20:1043–1079CrossRefGoogle Scholar
  36. Liu JW, Stace-Naughton A, Jiang XM, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131:1354–1355PubMedCentralPubMedCrossRefGoogle Scholar
  37. Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VMK (2011) A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011:939851PubMedCentralPubMedCrossRefGoogle Scholar
  38. Naumann CA, Prucker O, Lehmann T, Ruhe J, Knoll W, Frank CW (2002) The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization. Biomacromolecules 3:27–35PubMedCrossRefGoogle Scholar
  39. Palmqvist AEC (2003) Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr Opin Colloid Interface Sci 8:145–155CrossRefGoogle Scholar
  40. Pieter R, Cullis MJH (1985) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids and membranes. Benjammin/Cummings Pub Co., California, pp 25–72Google Scholar
  41. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers–model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167PubMedCrossRefGoogle Scholar
  42. Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19:1681–1691CrossRefGoogle Scholar
  43. Reviakine I, Rossetti FF, Morozov AN, Textor M (2005) Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J Chem Phys 122:8CrossRefGoogle Scholar
  44. Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505PubMedCrossRefGoogle Scholar
  45. Rossi C, Chopineau J (2007) Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J Biophys Lett 36:955–965CrossRefGoogle Scholar
  46. Rossi C, Homand J, Bauche C, Hamdi H, Ladant D, Chopineau J (2003) Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Biochemistry 42:15273–15283PubMedCrossRefGoogle Scholar
  47. Sauerbrey G (1959) Verwendung von Schwingquartzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222CrossRefGoogle Scholar
  48. Seantier B, Kasemo B (2009) Influence of mono–and divalent ions on the formation of supported phospholipid bilayers via vesicle adsorption. Langmuir 25:5767–5772PubMedCrossRefGoogle Scholar
  49. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17:1225–1236CrossRefGoogle Scholar
  50. Tamm LK, McConnell HM (1985) Supported phospholipid-bilayers. Biophys J 47:105–113PubMedCentralPubMedCrossRefGoogle Scholar
  51. Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663PubMedCrossRefGoogle Scholar
  52. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11PubMedCentralPubMedCrossRefGoogle Scholar
  53. Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177PubMedCrossRefGoogle Scholar
  54. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199PubMedCrossRefGoogle Scholar
  55. Zan GH, Jackman JA, Cho NJ (2014) AH peptide-mediated formation of charged planar lipid bilayers. J Phys Chem B 118:3616–3621PubMedCrossRefGoogle Scholar
  56. Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (1994) Langmuir-blodgett-films. Science 263:1726–1733PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • Maria Wallin
    • 1
    Email author
  • Jae-Hyeok Choi
    • 2
  • Seong Oh Kim
    • 2
  • Nam-Joon Cho
    • 2
    • 3
  • Martin Andersson
    • 1
  1. 1.Department of Chemical and Biological EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Chemical and Biomolecular EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations