European Biophysics Journal

, Volume 43, Issue 6–7, pp 341–346 | Cite as

Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers

  • Debora Baroni
  • Olga Zegarra-Moran
  • Agneta Svensson
  • Oscar Moran
Biophysics Letter


Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.


Small-angle X-ray scattering Bilayer Cystic fibrosis transmembrane conductance regulator (CFTR) Potentiator Corrector 



Partially supported by Fondazione per la Ricerca sulla Fibrosi Cistica (grant FFC4/2012). These experiments were performed at the BL11 beamline of the ALBA Synchrotron Light Facility with the collaboration of ALBA staff.


  1. Bobadilla JL, Macek MJ, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 19:575–606PubMedCrossRefGoogle Scholar
  2. Brzustowicz MR, Brunger AT (2005) X-ray scattering from unilamellar lipid vesicles. J Appl Cryst 38:126–131CrossRefGoogle Scholar
  3. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528PubMedCrossRefGoogle Scholar
  4. Gianotti A, Melani R, Caci E, Sondo E, Ravazzolo R, Galietta LJV, Zegarra-Moran O (2013) Epithelial sodium channel silencing as a strategy to correct the airway surface fluid deficit in cystic fibrosis. Am J Respir Cell Mol Biol 49:445–452PubMedCrossRefGoogle Scholar
  5. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:248–325CrossRefGoogle Scholar
  6. Haydon DA, Hendry BM, Levinson SR, Requena J (1977) The molecular mechanisms of anaesthesia. Nature 268:356–358PubMedCrossRefGoogle Scholar
  7. Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H (2003) Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophys J 85:1600–1610PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kucerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J (2007) Curvature effect on the structure of phospholipid bilayers. Langmuir 23:1292–1299PubMedCentralPubMedCrossRefGoogle Scholar
  9. Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217PubMedCrossRefGoogle Scholar
  10. Lopes LB, Scarpa MV, Silva GVJ, Rodrigues DC, Santilli CV, Oliveira AG (2004) Studies on the encapsulation of diclofenac in small unilamellar liposomes of soya phosphatidylcholine. Colloids Surf B Biointerfaces 39:151–158PubMedCrossRefGoogle Scholar
  11. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–6086PubMedCentralPubMedGoogle Scholar
  12. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303PubMedCrossRefGoogle Scholar
  13. Mateu L, Moran O (1986) Reversible changes in myelin structure and electrical activity during anesthesia in vivo. Biochim Biophys Acta 862:17–26PubMedCrossRefGoogle Scholar
  14. Moran O, Galietta LJV, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62:446–460PubMedCrossRefGoogle Scholar
  15. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high-quality X-ray data. Phys Rev E62:4000–4009Google Scholar
  16. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordoñez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672PubMedCentralPubMedCrossRefGoogle Scholar
  17. Su C, Wu S, Jeng U, Lee M, Su A, Liao K, Lin W, Huang Y, Chen C (2013) Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochim Biophys Acta 1828:528–534PubMedCrossRefGoogle Scholar
  18. Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • Debora Baroni
    • 1
  • Olga Zegarra-Moran
    • 2
  • Agneta Svensson
    • 3
  • Oscar Moran
    • 1
  1. 1.Istituto di BiofisicaCNRGenoaItaly
  2. 2.Laboratorio di Genetica MolecolareIstituto Giannina GasliniGenoaItaly
  3. 3.Cells-AlbaCerdanyola del VallèsSpain

Personalised recommendations