Advertisement

European Biophysics Journal

, Volume 43, Issue 2–3, pp 71–79 | Cite as

Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation

  • Heikki Ojala
  • Gabija ZiedaiteEmail author
  • Anders E. Wallin
  • Dennis H. Bamford
  • Edward Hæggström
Original Paper

Abstract

The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force–extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force–extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations.

Keywords

Poly(ethylene glycol) Force–extension curve Single molecule Coil–globule transition Internal friction Dissipated work 

Notes

Acknowledgments

This study was supported by Academy Professor (Academy of Finland) funding grants 255342 and 256518 to D.H.B. and Academy of Finland grant (128518) to E.H. H.O. acknowledges support from the Finnish Academy of Science and Letters (Väisälä Foundation).

References

  1. Alexander-Katz A, Wada H, Netz RR (2009) Internal friction and nonequilibrium unfolding of polymeric globules. Phys Rev Lett 103:28102CrossRefGoogle Scholar
  2. Baumann CG, Bloomfield VA, Smith SB, Bustamante C, Wang MD, Block SM (2000) Stretching of single collapsed DNA molecules. Biophys J 78:1965PubMedCentralPubMedCrossRefGoogle Scholar
  3. Besteman K, Van Eijk K, Lemay SG (2007a) Charge inversion accompanies DNA condensation by multivalent ions. Nat Phys 3:641–644CrossRefGoogle Scholar
  4. Besteman K, Hage S, Dekker NH, Lemay SG (2007b) Role of tension and twist in single-molecule DNA condensation. Phys Rev Lett 98:58103CrossRefGoogle Scholar
  5. Bloomfield VA (1997) DNA condensation by multivalent cations. Biopolymers 44:269–282PubMedCrossRefGoogle Scholar
  6. De Vries R (2001) Flexible polymer-induced condensation and bundle formation of DNA and F-actin filaments. Biophys J 80:1186–1194PubMedCentralPubMedCrossRefGoogle Scholar
  7. Einert TR, Sing CE, Alexander-Katz A, Netz RR (2011) Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations. Eur Phys J E Soft Matter Biol Phys 34:130CrossRefGoogle Scholar
  8. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604PubMedCrossRefGoogle Scholar
  9. Erbas A, Netz RR (2013) Confinement-dependent friction in peptide bundles. Biophys J 104:1285–1295PubMedCrossRefGoogle Scholar
  10. Fu WB, Wang XL, Zhang XH, Ran SY, Yan J, Li M (2006) Compaction dynamics of single DNA molecules under tension. J Am Chem Soc 128:15040–15041PubMedCrossRefGoogle Scholar
  11. Hormeño S, Moreno-Herrero F, Ibarra B, Carrascosa JL, Valpuesta JM, Arias-Gonzalez JR (2011) Condensation prevails over BA transition in the structure of DNA at low humidity. Biophys J 100:2006–2015PubMedCentralPubMedCrossRefGoogle Scholar
  12. Husale S, Grange W, Karle M, Bürgi S, Hegner M (2008) Interaction of cationic surfactants with DNA: a single-molecule study. Nucleic Acids Res 36:1443–1449PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kawakita H, Uneyama T, Kojima M, Morishima K, Masubuchi Y, Watanabe H (2009) Formation of globules and aggregates of DNA chains in DNA/poly(ethylene glycol)/monovalent salt aqueous solutions. J Chem Phys 131:094901PubMedCrossRefGoogle Scholar
  14. Keller JB, Rubinow SI (1976) Slender-body theory for slow viscous flow. J Fluid Mech 75:705–714CrossRefGoogle Scholar
  15. Kleideiter G, Nordmeier E (1999) Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutions I. Theoretical considerations. Polymer 40:4013–4023CrossRefGoogle Scholar
  16. Kombrabail MH, Krishnamoorthy G (2005) Fluorescence dynamics of DNA condensed by the molecular crowding agent poly(ethylene glycol). J Fluoresc 15:741–747PubMedCrossRefGoogle Scholar
  17. Korsbäck A, Wallin AE, Hæggström E (2014) Simulation of longitudinal string waves through a single polymer molecule. Wave Motion 51:41CrossRefGoogle Scholar
  18. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580PubMedCrossRefGoogle Scholar
  19. Murayama Y, Sano M (2001) Force measurements of a single DNA molecule in the collapsing phase transition. J Phys Soc Jpn 70:345–348CrossRefGoogle Scholar
  20. Murayama Y, Sakamaki Y, Sano M (2003) Elastic response of single DNA molecules exhibits a reentrant collapsing transition. Phys Rev Lett 90:18102CrossRefGoogle Scholar
  21. Murayama Y, Wada H, Sano M (2007) Dynamic force spectroscopy of a single condensed DNA. Europhys Lett 79:58001CrossRefGoogle Scholar
  22. Ojala H, Korsbäck A, Wallin AE, Hæggström E (2009) Optical position clamping with predictive control. Appl Phys Lett 95:181104CrossRefGoogle Scholar
  23. Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci U S A 100:3173–3178PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ramos JÉB Jr, De Vries R, Neto JR (2005) DNA ψ-condensation and reentrant decondensation: effect of the PEG degree of polymerization. J Phys Chem B 109:23661–23665PubMedCrossRefGoogle Scholar
  25. Ritort F, Bustamante C, Tinoco I (2002) A two-state kinetic model for the unfolding of single molecules by mechanical force. Proc Natl Acad Sci USA 99:13544–13548PubMedCrossRefGoogle Scholar
  26. Sakaue T (2007) Nonequilibrium dynamics of polymer translocation and straightening. Phys Rev E 76:021803CrossRefGoogle Scholar
  27. Savelyev A, Papoian GA (2006) Electrostatic, steric, and hydration interactions favor Na+ condensation around DNA compared with K+. J Am Chem Soc 128:14506–14518PubMedCrossRefGoogle Scholar
  28. Todd BA, Adrian Parsegian V, Shirahata A, Thomas TJ, Rau DC (2008) Attractive forces between cation condensed DNA double helices. Biophys J 94:4775–4782PubMedCentralPubMedCrossRefGoogle Scholar
  29. Van den Broek B, Noom MC, Van Mameren J, Battle C, MacKintosh FC, Wuite GJL (2010) Visualizing the formation and collapse of DNA toroids. Biophys J 98:1902–1910PubMedCentralPubMedCrossRefGoogle Scholar
  30. Vasilevskaya VV, Khokhlov AR, Matsuzawa Y, Yoshikawa K (1995) Collapse of single DNA molecule in poly(ethylene glycol) solutions. J Chem Phys 102:6595–6602CrossRefGoogle Scholar
  31. Wallin AE, Salmi A, Tuma R (2007) Step length measurement—theory and simulation for tethered bead constant-force single molecule assay. Biophys J 93:795–805PubMedCentralPubMedCrossRefGoogle Scholar
  32. Wallin AE, Ojala H, Hæggström E, Tuma R (2008) Stiffer optical tweezers through real-time feedback control. Appl Phys Lett 92:224104CrossRefGoogle Scholar
  33. Wallin AE, Ojala H, Ziedaite G, Hæggström E (2011) Dual-trap optical tweezers with real-time force clamp control. Rev Sci Instrum 82:083102PubMedCrossRefGoogle Scholar
  34. Zhang R, Shklovskii BI (2005) The pulling force of a single DNA molecule condensed by spermidine. Phys A 349:563–570CrossRefGoogle Scholar
  35. Zhang C, Shao PG, Van Kan JA, Van der Maarel JRC (2009) Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel. Proc Natl Acad Sci USA 106:16651–16656PubMedCrossRefGoogle Scholar
  36. Zinchenko AA, Yoshikawa K (2005) Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment. Biophys J 88:4118–4123PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • Heikki Ojala
    • 1
  • Gabija Ziedaite
    • 1
    • 2
    Email author
  • Anders E. Wallin
    • 3
  • Dennis H. Bamford
    • 2
    • 4
  • Edward Hæggström
    • 1
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Centre for Metrology and AccreditationEspooFinland
  4. 4.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations