European Biophysics Journal

, Volume 42, Issue 8, pp 613–620 | Cite as

Mechanical double layer model for Saccharomyces Cerevisiae cell wall

  • Ruben Mercadé-PrietoEmail author
  • Colin R. Thomas
  • Zhibing Zhang
Original Paper


The elastic modulus of the Baker’s yeast (Saccharomyces cerevisiae) cell wall reported in studies using atomic force microscopy (AFM) is two orders of magnitude lower than that obtained using whole cell compression by micromanipulation. Using finite element modelling, it is shown that Hertz-Sneddon analysis cannot be applied to AFM indentation data for single layer core–shell structures. In addition, the Reissner solution for shallow homogeneous spheres is not appropriate for thick walls such as those of yeast cells. In order to explain yeast compression measurements at different length scales, a double layer wall model is presented considering a soft external layer composed of mannoproteins, and a stiff inner layer of β-glucan fibres and chitin. Under this model, previous AFM studies using sharp indenters provide reasonable estimates of the external layer elastic modulus, while micromanipulation provides the total stiffness of the cell wall. Data from both measurements are combined to estimate the mechanical properties of the inner stiff layer.


Elasticity Compression Indentation Yeast Finite element modelling 



The authors gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (EPRSC), UK, through grant number EP/F068395/1.

Supplementary material

249_2013_909_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1628 kb)


  1. Arfsten J, Leupold S, Bradtmoller C, Kampen I, Kwade A (2010) Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Colloids Surfaces B Biointerfaces 79:284–290CrossRefGoogle Scholar
  2. Arghavani J, Auricchio F, Naghdabadi R (2011) A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int J Plast 27:940–961CrossRefGoogle Scholar
  3. Blahovec J, Hejlova A, Copicova J, Novak M (2011) Tensile properties of microbial β-glucan films. Polym Eng Sci 51:2564–2570CrossRefGoogle Scholar
  4. Bui VC, Kim YU, Choi SS (2008) Physical characteristics of Saccharomyces cerevisiae. Surf Interface Anal 40:1323–1327CrossRefGoogle Scholar
  5. Cao G, Chandra N (2010) Evaluation of biological cell properties using dynamic indentation measurement. Phys Rev E 81:021924CrossRefGoogle Scholar
  6. Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457:551–559CrossRefPubMedGoogle Scholar
  7. Chaudhari RD, Stenson JD, Overton TW, Thomas CR (2012) Effect of bud scars on the mechanical properties of Saccharomyces cerevisiae cell walls. Chem Eng Sci 84:188–196CrossRefGoogle Scholar
  8. Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684CrossRefPubMedGoogle Scholar
  9. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810CrossRefPubMedGoogle Scholar
  10. Fery A, Weinkamer R (2007) Mechanical properties of micro- and nanocapsules: single-capsule measurements. Polymer 48:7221–7235CrossRefGoogle Scholar
  11. Gaskova D, Brodska B, Herman P, Vecer J, Malinsky J, Sigler K, Benada O, Plasek J (1998) Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast 14:1189–1197CrossRefPubMedGoogle Scholar
  12. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256CrossRefPubMedGoogle Scholar
  13. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202CrossRefPubMedGoogle Scholar
  14. Kreger DR, Kopecka M (1976) Nature and formation of fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid-media—electron-microscopic, X-ray-diffraction and chemical study. J Gen Microbiol 92:207–220CrossRefGoogle Scholar
  15. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833CrossRefPubMedGoogle Scholar
  16. Lanero TS, Cavalleri O, Krol S, Rolandi R, Gliozzi A (2006) Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol 124:723–731CrossRefGoogle Scholar
  17. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740PubMedGoogle Scholar
  18. Mercadé-Prieto R, Nguyen B, Allen R, York D, Preece JA, Goodwin TE, Zhang Z (2011) Determination of the elastic properties of compressed microcapsules using finite element modelling. Chem Eng Sci 66:2042–2049CrossRefGoogle Scholar
  19. Minc N, Boudaoud A, Chang F (2009) Mechanical forces of fission yeast growth. Curr Biol 19:1096–1101CrossRefPubMedGoogle Scholar
  20. Moor H, Muhlethaler K (1963) Fine structure in Frozen-Etched yeast cells. J Cell Biol 17:609–628CrossRefPubMedGoogle Scholar
  21. Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233CrossRefPubMedGoogle Scholar
  22. Pan X, Mercadé-Prieto R, York D, Preece JA, Zhang Z (2013) Structure and mechanical properties of consumer-friendly PMMA microcapsules. Ind. Eng. Chem. Res doi: 10.1021/ie303451s
  23. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150CrossRefPubMedGoogle Scholar
  24. Pretzl M, Neubauer M, Tekaat M, Kunert C, Kuttner C, Leon G+, Berthier D, Erni P, Ouali L, Fery A (2012) Formation and mechanical characterization of aminoplast core/shell microcapsules. ACS Appl Mater Interfaces 4:2940–2948CrossRefGoogle Scholar
  25. Reissner E (1946) Stresses and small displacements of shallow spherical shells.2. J Math Phys 25:279–300Google Scholar
  26. Routier-Kierzkowska AL, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522CrossRefPubMedGoogle Scholar
  27. Saito T, Soga K, Hoson T, Terashima I (2006) The bulk elastic modulus and the reversible properties of cell walls in developing quercus leaves. Plant Cell Physiol 47:715–725CrossRefPubMedGoogle Scholar
  28. Schaber J, Adrover M, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksor M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39:1547–1556CrossRefPubMedGoogle Scholar
  29. Sen S, Subramanian S, Discher DE (2005) Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89:3203–3213CrossRefPubMedGoogle Scholar
  30. Sirghi L (2010) Atomic force microscopy indentation of living cells. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology. Applications and Education, Formatex, Badajoz, pp 433–440Google Scholar
  31. Smith AE, Moxham KE, Middelberg APJ (2000a) Wall material properties of yeast cells. Part II Anal Chem Eng Sci 55:2043–2053CrossRefGoogle Scholar
  32. Smith AE, Zhang Z, Thomas CR (2000b) Wall material properties of yeast cells: part 1. Cell measurements and compression experiments. Chem Eng Sci 55:2031–2041CrossRefGoogle Scholar
  33. Smith AE, Zhang ZB, Thomas CR, Moxham KE, Middelberg APJ (2000c) The mechanical properties of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:9871–9874CrossRefPubMedGoogle Scholar
  34. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  35. Stenson JD, Thomas CR, Hartley P (2009) Modelling the mechanical properties of yeast cells. Chem Eng Sci 64:1892–1903CrossRefGoogle Scholar
  36. Stenson JD, Hartley P, Wang C, Thomas CR (2011) Determining the mechanical properties of yeast cell walls. Biotechnol Prog 27:505–512CrossRefPubMedGoogle Scholar
  37. Thomas CR, Zhang Z, Cowen C (2000) Micromanipulation measurements of biological materials. Biotechnol Lett 22:531–537CrossRefGoogle Scholar
  38. Touhami A, Nysten B, Dufrene YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543CrossRefGoogle Scholar
  39. Vella D, Ajdari A, Vaziri A, Boudaoud A (2012) The indentation of pressurized elastic shells: from polymeric capsules to yeast cells. J R Soc Interface 9:448–455CrossRefPubMedGoogle Scholar
  40. Wu HI, Spence RD, Sharpe PJH, Goeschl JD (1985) Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles. Plant Cell Environ 8:563–570CrossRefPubMedGoogle Scholar
  41. Zhang Z, Stenson JD, Thomas CR (2009) Micromanipulation in mechanical characterisation of single particles. In: Jinghai L (ed) Advances in chemical engineering, characterization of flow, particles and interfaces. Academic Press, Salt Lake City, pp 29–85CrossRefGoogle Scholar
  42. Zhao L, Schaefer D, Xu H, Modi SJ, LaCourse WR, Marten MR (2005) Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Prog 21:292–299CrossRefPubMedGoogle Scholar
  43. Zinin PV, Allen JS (2009) Deformation of biological cells in the acoustic field of an oscillating bubble. Phys Rev E 79:021910CrossRefGoogle Scholar
  44. Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces-cerevisiae mannoproteins form an external cell-wall layer that determines wall porosity. J Bacteriol 159:1018–1026PubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2013

Authors and Affiliations

  • Ruben Mercadé-Prieto
    • 1
    • 2
    Email author
  • Colin R. Thomas
    • 1
  • Zhibing Zhang
    • 1
  1. 1.School of Chemical EngineeringUniversity of BirminghamBirminghamUK
  2. 2.Chemical Engineering Innovation LabSoochow UniversitySuzhouChina

Personalised recommendations