European Biophysics Journal

, Volume 42, Issue 6, pp 477–485 | Cite as

Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores

  • Tatyana I. Rokitskaya
  • Tatyana M. Ilyasova
  • Inna I. Severina
  • Yuri N. Antonenko
  • Vladimir P. Skulachev
Original Paper

Abstract

Protonophores can be considered as candidates for anti-obesity drugs and tools to prevent excessive reactive oxygen species production in mitochondria by means of a limited decrease in the mitochondrial potential. Experimentally used protonophores are weak acids that can carry protons across a membrane in a neutral (protonated) form, and they come back in an anionic (deprotonated) form. A cationic derivative of rhodamine 19 and plastoquinone (SkQR1) was recently shown to possess uncoupling activity in mitochondria and in intact cells. In this article, we studied the mechanism of action of SkQR1 and its plastoquinone-lacking analog (C12R1) on a planar bilayer lipid membrane by applying voltage jumps. The steady-state current was proportional to the C12R1 concentration in a manner as if the monomeric form of the carrier were operative. As predicted by the carrier model, at high pH, when rhodamines were mainly deprotonated, the current changed immediately following a jump in the applied potential and then remained constant. By contrast, at low pH, the current relaxed from an initially high value to a lower value since the protonated carrier cations were redistributed in the membrane. An inverse pH dependence was revealed with the anionic protonophore CCCP. The dependence of the SkQR1 protonophorous activity on voltage exhibited an increase at high voltages, an effect that might facilitate mild (self-limited) uncoupling of mitochondria.

Keywords

Bilayer lipid membrane Protonophore Uncoupling activity Dipole potential SkQR1 

Notes

Acknowledgments

The authors thank Dr. Elena Kotova for valuable comments. This work was supported in part by the Russian Foundation for Basic Research grant 12-04-00199 and the Institute of Mitoengineering, Lomonosov Moscow State University.

References

  1. Andersen OS, Finkelstein A, Katz I (1976) Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol 67:749–771PubMedCrossRefGoogle Scholar
  2. Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OYu, Izyumov DS, Khailova LS, Klishin SS, Korshunov SS, Korshunova GA, Kovaleva NA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Tikhomirova NK, Vassiliev YM, Vyssokikh MY, Yaguzhinsky LS, Skulachev VP (2008) Mitochondria-targeted derivative of plastoquinone as tool to interrupt execution of an aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287CrossRefGoogle Scholar
  3. Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286:17831–17840PubMedCrossRefGoogle Scholar
  4. Antonenko YN, Perevoshchikova IV, Rokitskaya TI, Simonyan RA, Tashlitsky VV, Skulachev VP (2012) Effect of liposomes on energy-dependent uptake of the antioxidant SkQR1 by isolated mitochondria. J Bioenerg Biomembr 44:453–460PubMedCrossRefGoogle Scholar
  5. Balaz S, Sturdik E, Durcova E, Antalik M, Sulo P (1986) Quantitative structure-activity relationship of carbonylcyanide phenylhydrazones as uncouplers of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 851:93–98PubMedCrossRefGoogle Scholar
  6. Benz R, McLaughlin S (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J 41:381–398PubMedCrossRefGoogle Scholar
  7. Berkovich AK, Lukashev EP, Melik-Nubarov NS (2012) Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu. Biochim Biophys Acta 1818:375–383PubMedCrossRefGoogle Scholar
  8. Blaikie FH, Brown SE, Samuelsson LM, Brand MD, Smith RA, Murphy MP (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. Biosci Rep 26:231–243PubMedCrossRefGoogle Scholar
  9. Borisova MP, Ermishkin LN, Liberman EA, Silberstein AY, Trofimov EM (1974) Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole. J Membr Biol 18:243–261PubMedCrossRefGoogle Scholar
  10. Brockman H (1994) Dipole potential of lipid membranes. Chem Phys Lipids 73:57–79PubMedCrossRefGoogle Scholar
  11. Cunha FM, Caldeira da Silva CC, Cerqueira FM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling as a therapeutic strategy. Curr Drug Targets 12:783–789PubMedCrossRefGoogle Scholar
  12. Duvvuri M, Gong Y, Chatterji D, Krise JP (2004) Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 279:32367–32372PubMedCrossRefGoogle Scholar
  13. Franklin JC, Cafiso DS (1993) Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J 65:289–299PubMedCrossRefGoogle Scholar
  14. Gawrisch K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223PubMedCrossRefGoogle Scholar
  15. Hall JE, Mead CA, Szabo G (1973) A barrier model for current flow in lipid bilayer membranes. J Membr Biol 11:75–97CrossRefGoogle Scholar
  16. Hladky SB (1974) The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta 352:71–85PubMedCrossRefGoogle Scholar
  17. Il’yasova TM, Rokitskaya TI, Severina II, Antonenko YN, Skulachev VP (2012) Substitution of ether linkage for ester bond in phospholipid increases permeability of bilayer lipid membrane for SkQ1-type penetrating cations. Biochemistry (Mosc) 77:1038–1043CrossRefGoogle Scholar
  18. Kasianowicz J, Benz R, McLaughlin S (1984) The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol 82:179–190PubMedCrossRefGoogle Scholar
  19. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18PubMedCrossRefGoogle Scholar
  20. Langner M, Isac T, Hui SW (1995) Interaction of free fatty acids with phospholipid bilayers. Biochim Biophys Acta 1236:73–80PubMedCrossRefGoogle Scholar
  21. LeBlanc OH (1971) Effect of uncouplers of oxidative phosphorylation on bilayer membranes: carbonylcyanide-m-chlorophenylhydrazone. J Membr Biol 4:227–251CrossRefGoogle Scholar
  22. Liberman EA, Topaly VP (1969) Permeability of biomolecular phospholipid membranes for fat-soluble ions. Biofizika 14:452–461PubMedGoogle Scholar
  23. Lou PH, Hansen BS, Olsen PH, Tullin S, Murphy MP, Brand MD (2007) Mitochondrial uncouplers with an extraordinary dynamic range. Biochem J 407:129–140PubMedCrossRefGoogle Scholar
  24. McLaughlin S (1972) The mechanism of action of DNP on phospholipid bilayer membranes. J Membr Biol 9:361–372PubMedCrossRefGoogle Scholar
  25. Mueller P, Rudin DO, Tien HT, Wescott WC (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution. J Phys Chem 67:534–535Google Scholar
  26. Nagamune H, Fukushima Y, Takada J, Yoshida K, Unami A, Shimooka T, Terada H (1993) The lipophilic weak base (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421) is a potent protonophore type cationic uncoupler of oxidative phosphorylation in mitochondria. Biochim Biophys Acta 1141:231–237PubMedCrossRefGoogle Scholar
  27. O’Shaughnessy K, Hladky SB (1983) Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone. Biochim Biophys Acta 724:381–387PubMedCrossRefGoogle Scholar
  28. Pickar AD, Benz R (1978) Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J Membr Biol 44:353–376CrossRefGoogle Scholar
  29. Ptak M, Egret-Charlier M, Sanson A, Bouloussa O (1980) A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta 600:387–397PubMedCrossRefGoogle Scholar
  30. Rokitskaya TI, Klishin SS, Severina II, Skulachev VP, Antonenko YN (2008) Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. J Membr Biol 224:9–19PubMedCrossRefGoogle Scholar
  31. Schwaller MA, Allard B, Lescot E, Moreau F (1995) Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria. J Biol Chem 270:22709–22713PubMedCrossRefGoogle Scholar
  32. Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci USA 107:663–668PubMedCrossRefGoogle Scholar
  33. Severina II (1982) Nystatin-induced increase in photocurrent in the system ‘bacteriorhodopsin proteoliposome/bilayer planar membrane’. Biochim Biophys Acta 681:311–317CrossRefGoogle Scholar
  34. Skulachev VP (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385–1396CrossRefGoogle Scholar
  35. Sun X, Garlid KD (1992) On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. J Biol Chem 267:19147–19154PubMedGoogle Scholar
  36. Von Tscharner V, Radda GK (1981) The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence. Biochim Biophys Acta 643:435–448CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2013

Authors and Affiliations

  • Tatyana I. Rokitskaya
    • 1
  • Tatyana M. Ilyasova
    • 2
  • Inna I. Severina
    • 3
  • Yuri N. Antonenko
    • 1
  • Vladimir P. Skulachev
    • 1
    • 2
    • 4
  1. 1.A. N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia
  3. 3.Biological DepartmentLomonosov Moscow State UniversityMoscowRussia
  4. 4.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations