European Biophysics Journal

, Volume 42, Issue 5, pp 333–345 | Cite as

Characterization of new DOPC/DHPC platform for dermal applications

  • Gelen RodríguezEmail author
  • Laia Rubio
  • Clara Barba
  • Carmen López-Iglesias
  • Alfons de la Maza
  • Olga López
  • Mercedes Cócera
Original Paper


Systems formed by mixtures of the phospholipids dioleoylphosphatidylcholine (DOPC) and dihexanoylphosphatidylcholine (DHPC) were characterized by use of differential scanning calorimetry, small angle X-ray scattering and two electron-microscopy techniques, freeze fracture electron microscopy and cryogenic transmission electron microscopy. These techniques allowed for the determination of the size, morphology, structural topology, self-assembly and thermotropic behavior of the nanostructures present in the mixtures. The interaction between the two phospholipids provides curvatures, irregularities and the increase of thickness and flexibility in the membrane. These effects led to the formation of different aggregates with a differential distribution of both phospholipids. The effect of these systems on the skin in vivo was evaluated by measurement of the biophysical skin parameters. Our results show that the DOPC/DHPC application induces a decrease in the permeability and in the hydration of the tissue. These effects in vivo are related to different microstructural changes promoted by these systems in the skin in vitro, published in a recent work. The fundamental biophysical analyses of DOPC/DHPC systems contribute to our understanding of the mechanisms that govern their interaction with the skin.


Dioleoyl-glycero-phosphatidylcholine Dihexanoyl-glycero-phosphatidylcholine Lipid aggregates Skin parameters 











Freeze fracture electron microscopy


Small-angle X-ray scattering


Differential scanning calorimetry


Cryo-transmission electron microscopy


Trans epidermal water loss



The authors wish to thank Ramon Pons, Jaume Caelles, Josep Carrilla and Rocío Vicente for expert technical assistance. M. Cócera is funded by the JAE-DOC program from CSIC (co-funded by FSE). This work was supported by funds from CICYT (CTQ 2010-16964) and from Generalitat de Catalunya (2009 SGR 1212).


  1. Almgren M (2010) Stomatosomes: perforated bilayer structures. Soft Matter 6:1383–1390CrossRefGoogle Scholar
  2. Barbosa-Barros L, Barba C, Cócera M, Coderch L, López-Iglesias C, de la Maza A, López O (2008a) Effect of bicellar systems on skin properties. Int J Pharmaceut 352:263–272CrossRefGoogle Scholar
  3. Barbosa-Barros L, de la Maza A, Estelrich J, Linares AM, Feliz M, Walther P, Pons R, López O (2008b) Penetration and growth of DPPC/DHPC bicelles inside the stratum corneum of the skin. Langmuir 24:5700–5706PubMedCrossRefGoogle Scholar
  4. Barbosa-Barros L, de la Maza A, López-Iglesias C, López O (2008c) Ceramide effects in the bicelle structure. Colloid Surf A 317:576–584CrossRefGoogle Scholar
  5. Barbosa-Barros L, Barba C, Rodriguez G, Cocera M, Coderch L, Lopez-Iglesias C, de la Maza A, Lopez O (2009a) Lipid nanostructures: self-assembly and effect on skin properties. Mol Pharmaceut 6:1237–1245CrossRefGoogle Scholar
  6. Barbosa-Barros L, de la Maza A, Walther P, Linares AM, Feliz M, Estelrich J, López O (2009b) Use of high-pressure freeze fixation and freeze fracture electron microscopy to study the influence of the phospholipid molar ratio in the morphology and alignment of bicelles. J Microsc 233:35–41PubMedCrossRefGoogle Scholar
  7. Barbosa-Barros L, Rodriguez G, Barba C, Cocera M, Rubio L, Estelrich J, Lopez-Iglesias C, de la Maza A, Lopez O (2012) Bicelles: lipid nanostructured platforms with potential dermal applications. Small (Weinheim an der Bergstrasse, Germany) 8:807–818Google Scholar
  8. Bian JR, Roberts MF (1990) Phase separation in short-chain lecithin/gel-state long-chain lecithin aggregates. Biochemistry 29:7928–7935PubMedCrossRefGoogle Scholar
  9. Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proceed Camb Philos Soc 17:43–57Google Scholar
  10. Caminiti R, Caracciolo G, Pisani M, Bruni P (2005) Effect of hydration on the long-range order of lipid multilayers investigated by in situ time-resolved energy dispersive x-ray diffraction. Chem Phys Lett 409:331–336CrossRefGoogle Scholar
  11. Chen L, Yu Z, Quinn PJ (2007) The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study. Biochim Biophys Acta 1768:2873–2881PubMedCrossRefGoogle Scholar
  12. Cócera M, López O, Estelrich J, Parra JL, de la Maza A (2002) Adsorption of sodium lauryl ether sulfate on liposomes by means of a fluorescent probe: effect of the ethylene oxide groups. Langmuir 18:8250–8254CrossRefGoogle Scholar
  13. Danino D, Talmon Y, Zana R (1997) Vesicle-to-micelle transformation in systems containing dimeric surfactants. J Colloid Interf Sci 185:84–93CrossRefGoogle Scholar
  14. de la Maza A, Manich AM, Parra JL (1997) Intermediate aggregates resulting in the interaction of bile salts with liposomes studied by transmission electron microscopy and light scattering techniques. J Microsc 186:75–83CrossRefGoogle Scholar
  15. Gabriel NE, Roberts MF (1986) Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously. Biochemistry 25:2812–2821PubMedCrossRefGoogle Scholar
  16. Hauser H (2000) Short-chain phospholipids as detergents. Biochim Biophys Acta 1508:164–181PubMedCrossRefGoogle Scholar
  17. Honeywell-Nguyen PL, Frederik PM, Bomans PH, Junginger HE, Bouwstra JA (2002) Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: characterization and in vitro transport studies. Pharm Res 19:991–997PubMedCrossRefGoogle Scholar
  18. Hou D, Xie C, Huang K, Zhu C (2003) The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 24:1781–1785PubMedCrossRefGoogle Scholar
  19. Kessi J, Poiree JC, Wehrli E, Bachofen R, Semenza G, Hauser H (1994) Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry 33:10825–10836PubMedCrossRefGoogle Scholar
  20. Lopez RF, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32:933–941PubMedCrossRefGoogle Scholar
  21. López O, de la Maza A, Coderch L, López-Iglesias C, Parra J (1998) Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Lett 426:314–318PubMedCrossRefGoogle Scholar
  22. Mannock DA, Lewis RN, McElhaney RN (2010) A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta 1798:376–388PubMedCrossRefGoogle Scholar
  23. Meyer HW, Richter W (2001) Freeze-fracture studies on lipids and membranes. Micron 32:615–644PubMedCrossRefGoogle Scholar
  24. Mihailescu M, Vaswani RG, Jardon-Valadez E, Castro-Roman F, Freites JA, Worcester DL, Chamberlin AR, Tobias DJ, White SH (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100:1455–1462PubMedCrossRefGoogle Scholar
  25. Miteva M, Richter S, Elsner P, Fluhr JW (2006) Approaches for optimizing the calibration standard of TewameterTM300. Exp Dermatol 15:904–912PubMedCrossRefGoogle Scholar
  26. Nilsson A, Holmgren A, Lindblom G (1991) Fourier-transform infrared spectroscopy study of dioleoylphosphatidylcholine and monooleoylglycerol in lamellar and cubic liquid crystals. Biochemistry 30:2126–2133PubMedCrossRefGoogle Scholar
  27. Pabst G, Kucerka N, Nieh MP, Rheinstadter MC, Katsaras J (2010) Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 163:460–479PubMedCrossRefGoogle Scholar
  28. Papahadjopoulos-Sternberg B (2005) Comparison of freeze-fracture- with cryo-electron microscopy on molecular assemblies suitable for drug & gene delivery. Microsc Microanal 11:1048–1049CrossRefGoogle Scholar
  29. Parry MJ, Hagen M, Mouritsen OG, Kinnunen PK, Alakoskela JM (2010) Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement. Langmuir 26:4909–4915PubMedCrossRefGoogle Scholar
  30. Pereira-Lachataignerais J, Pons R, Amenitsch H, Rappolt M, Sartori B, López O (2006) Effect of sodium dodecyl sulfate at different hydration conditions on dioleoyl phosphatidylcholine bilayers studied by grazing incidence x-ray diffraction. Langmuir 22:5256–5260PubMedCrossRefGoogle Scholar
  31. Ramos J, Imaz A, Callejas-Fernández J, Barbosa-Barros L, Estelrich J, Quesada-Pérez M, Forcada J (2011) Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization. Soft Matter. doi: 10.1039/C0SM01409E Google Scholar
  32. Rodríguez G, Barbosa-Barros L, Rubio L, Cócera M, Díez A, Estelrich J, Pons R, Caelles J, de la Maza A, López O (2009) Conformational changes in stratum corneum lipids by effect of bicellar systems. Langmuir 25:10595–10603PubMedCrossRefGoogle Scholar
  33. Rodríguez G, Rubio L, Cócera M, Estelrich J, Pons R, de la Maza A, López O (2010) Application of bicellar systems on skin: diffusion and molecular organization effects. Langmuir 26:10578–10584PubMedCrossRefGoogle Scholar
  34. Rodríguez G, Cócera M, Rubio L, López-Iglesias C, Pons R, de la Maza A, López O (2012) A unique bicellar nanosystem combining two effects on stratum corneum lipids. Mol Pharmaceut 9:482–491CrossRefGoogle Scholar
  35. Rubio L, Alonso C, Rodriguez G, Barbosa-Barros L, Coderch L, de la Maza A, Parra JL, Lopez O (2010) Bicellar systems for in vitro percutaneous absorption of diclofenac. Int J Pharmaceut 386:108–113CrossRefGoogle Scholar
  36. Schaffran T, Li J, Karlsson G, Edwards K, Winterhalter M, Gabel D (2010) Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem Phys Lipids 163:64–73PubMedCrossRefGoogle Scholar
  37. Shah PP, Desai PR, Patel AR, Singh MS (2012) Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 33:1607–1617PubMedCrossRefGoogle Scholar
  38. Soong R, Macdonald PM (2009) Water diffusion in bicelles and the mixed bicelle model. Langmuir 25:380–390PubMedCrossRefGoogle Scholar
  39. Strey R, Jahn W, Porte G, Bassereau P (1990) Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases. Langmuir 6:1635–1639CrossRefGoogle Scholar
  40. Takajo Y, Matsuki H, Matsubara H, Tsuchiya K, Aratono M, Yamanaka M (2010) Structural and morphological transition of long-chain phospholipid vesicles induced by mixing with short-chain phospholipid. Colloid Surf B 76:571–576CrossRefGoogle Scholar
  41. Triba MN, Devaux PF, Warschawski DE (2006) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91:1357–1367PubMedCrossRefGoogle Scholar
  42. Ulrich AS, Sami M, Watts A (1994) Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta 1191:225–230PubMedCrossRefGoogle Scholar
  43. Van Dam L, Karlsson G, Edwards K (2006) Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. Langmuir 28:3280–3285Google Scholar
  44. Videira RA, Antunes-Madeira MC, Madeira VM (1999) Perturbations induced by alpha- and beta-endosulfan in lipid membranes: a DSC and fluorescence polarization study. Biochim Biophys Acta 1419:151–163PubMedCrossRefGoogle Scholar
  45. Vold RR, Prosser RS (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J Magn Reson B 113:267–271CrossRefGoogle Scholar
  46. Whiles JA, Deems R, Vold RR, Dennis EA (2002) Bicelles in structure–function studies of membrane-associated proteins. Bioorg Chem 30:431–442PubMedCrossRefGoogle Scholar
  47. Yang L, Huang HW (2003) A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys J 84:1808–1817PubMedCrossRefGoogle Scholar
  48. Yilmaz E, Borchert H-H (2006) Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema: an in vivo study. Int J Pharmaceut 307:232–238CrossRefGoogle Scholar
  49. Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, Li R, Ding Y, Jiang X, Liu B (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(epsilon-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32:9525–9535PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • Gelen Rodríguez
    • 1
    Email author
  • Laia Rubio
    • 1
  • Clara Barba
    • 1
  • Carmen López-Iglesias
    • 2
  • Alfons de la Maza
    • 1
  • Olga López
    • 1
  • Mercedes Cócera
    • 1
  1. 1.Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of CataloniaIQAC-CSICBarcelonaSpain
  2. 2.University of Barcelona’s Scientific and Technological Centers (CCiT-UB)BarcelonaSpain

Personalised recommendations