European Biophysics Journal

, Volume 42, Issue 2–3, pp 147–158

Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes

  • Csilla Ferencz
  • Pál Petrovszki
  • Zoltán Kóta
  • Elfrieda Fodor-Ayaydin
  • Lajos Haracska
  • Attila Bóta
  • Zoltán Varga
  • András Dér
  • Derek Marsh
  • Tibor Páli
Original Paper


The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6–32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8–48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.


ATPase Concanamycin F-ATPase Native membrane Rotary enzyme V-ATPase 


  1. Adachi K, Oiwa K, Nishizaka T et al (2007) Coupling of rotation and catalysis in F-1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321PubMedCrossRefGoogle Scholar
  2. Baars TL, Petri S, Peters C, Mayer A (2007) Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell 18:3873–3882PubMedCrossRefGoogle Scholar
  3. Beyenbach KW, Wieczorek H (2006) The V-type H+-ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589PubMedCrossRefGoogle Scholar
  4. Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci USA 94:14291–14293PubMedCrossRefGoogle Scholar
  5. Bohrmann J, Bonafede A (2001) Tissue-specific distribution, variation of the channel-forming protein ductin during development of Drosophila melanogaster (vol 44, pp 884, 2000). Int J Dev Biol 45:U4Google Scholar
  6. Bowman EJ, Bowman BJ (2005) V-ATPases as drug targets. J Bioenerg Biomembr 37:431–435PubMedCrossRefGoogle Scholar
  7. Bowman E, Siebers A, Altendorf K (1988) Bafilomycins—a class of inhibitors of membrane ATPases from microorganisms, animal-cells, and plant-cells. Proc Natl Acad Sci USA 85:7972–7976PubMedCrossRefGoogle Scholar
  8. Bowman BJ, McCall ME, Baertsch R, Bowman EJ (2006) A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 281:31885–31893PubMedCrossRefGoogle Scholar
  9. Cipriano DJ, Wang Y, Bond S et al (2008) Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 1777:599–604PubMedCrossRefGoogle Scholar
  10. Clelland ES, Saleuddin AS (2000) Vacuolar-type ATPase in the accessory boring organ of Nucella lamellosa (Gmelin) (Mollusca: Gastropoda): role in shell penetration. Biol Bull 198:272–283PubMedCrossRefGoogle Scholar
  11. De la Cruz EM, Sweeney HL, Ostap EM (2000) ADP inhibition of myosin V-ATPase activity. Biophys J 79:1524–1529CrossRefGoogle Scholar
  12. Dixon N, Pali T, Ball S et al (2003) New biophysical probes for structure-activity analyses of vacuolar-H+-ATPase enzymes. Org Biomol Chem 1:4361–4363PubMedCrossRefGoogle Scholar
  13. Dixon N, Pali T, Kee TP, Marsh D (2004) Spin-labelled vacuolar-ATPase inhibitors in lipid membranes. Biochim Biophys Acta 1665:177–183PubMedCrossRefGoogle Scholar
  14. Dixon N, Pali T, Kee TP et al (2008) Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. Biophys J 94:506–514PubMedCrossRefGoogle Scholar
  15. Dmitriev OY, Jones PC, Fillingame RH (1999) Structure of the subunit c oligomer in the F1F0 ATP synthase: model derived from solution structure of the monomer and cross-linking in the native ensyme. Proc Natl Acad Sci USA 96:7785–7790PubMedCrossRefGoogle Scholar
  16. Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P-type and V-type adenosine-triphosphatases. Biochemistry 32:3902–3906PubMedCrossRefGoogle Scholar
  17. Dunlop J, Jones PC, Finbow ME (1995) Membrane insertion and assembly of ductin—a polytopic channel with dual orientations. EMBO J 14:3609–3616PubMedGoogle Scholar
  18. El Far O, Seagar M (2011) A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem 117:603–612PubMedGoogle Scholar
  19. Farina C, Gagliardi S (1999) Selective inhibitors of the osteoclast vacuolar proton ATPase as novel bone antiresorptive agents [review]. Drug Discov Today 4:163–172PubMedCrossRefGoogle Scholar
  20. Feniouk BA, Suzuki T, Yoshida M (2007) Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase. J Biol Chem 282:764–772PubMedCrossRefGoogle Scholar
  21. Ferguson SJ (2000) ATP synthase: what dictates the size of a ring? Curr Biol 10:R804–R808PubMedCrossRefGoogle Scholar
  22. Fillingame RH, Jiang W, Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J Exp Biol 203:9–17PubMedGoogle Scholar
  23. Finbow ME, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712PubMedGoogle Scholar
  24. Finbow ME, John S, Kam E, Apps DK, Pitts JD (1993) Disposition and orientation of ductin (DCCD-reactive vacuolar H+-ATPase subunit) in mammalian membrane complexes. Exp Cell Res 207:261–270PubMedCrossRefGoogle Scholar
  25. Finbow M, Goodwin SF, Meagher L et al (1994) Evidence that the 16-Kda proteolipid (Subunit-c) of the vacuolar H+-ATPase and ductin from gap-junctions are the same polypeptide in Drosophila and Manduca—molecular-cloning of the Vha16 K Gene from Drosophila. J Cell Sci 107:1817–1824PubMedGoogle Scholar
  26. Finbow ME, Harrison M, Jones P (1995) Ductin—a proton pump component, a gap junction channel and a neurotransmitter release channel. BioEssays 17:247–255PubMedCrossRefGoogle Scholar
  27. Furuike S, Nakano M, Adachi K, Noji H, Kinosita K, Yokoyama K (2011) Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe. Nat Commun 2:ARTN 233CrossRefGoogle Scholar
  28. Futai M, Omote H, Sambongi Y, Wada Y (2000) Synthase (H + ATPase): coupling between catalysis, mechanical work, and proton translocation. Biochim Biophys Acta 1458:276–288PubMedCrossRefGoogle Scholar
  29. Gagliardi S, Rees M, Farina C (1999) Chemistry and structure activity relationships of bafilomycin A(1), a potent and selective inhibitor of the vacuolar H+-ATPase. Curr Med Chem 6:1197–1212PubMedGoogle Scholar
  30. Gibson LCD, Cadwallader G, Finbow ME (2002) Evidence that there are two copies of subunit c″ in V-0 complexes in the vacuolar H+-ATPase. Biochem J 366:911–919PubMedGoogle Scholar
  31. Grabe M, Wang HY, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813PubMedCrossRefGoogle Scholar
  32. Hermolin J, Fillingame RH (1989) H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. J Biol Chem 264:3896–3903PubMedGoogle Scholar
  33. Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408PubMedCrossRefGoogle Scholar
  34. Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 272:4795–4803PubMedCrossRefGoogle Scholar
  35. Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase—relative rotation of the G and c subunits. J Biol Chem 278:23714–23719PubMedCrossRefGoogle Scholar
  36. Holzenburg A, Jones PC, Franklin T et al (1993) Evidence for a common structure for a class of membrane channels. Eur J Biochem 213:21–30PubMedCrossRefGoogle Scholar
  37. Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid-vesicles. Chem Phys Lipids 40:89–107CrossRefGoogle Scholar
  38. Huss M, Ingenhorst G, Konig S et al (2002) Concanamycin a, the specific inhibitor of V-ATPases, binds to the V-o subunit c. J Biol Chem 277:40544–40548PubMedCrossRefGoogle Scholar
  39. Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K (2005) Rotation scheme of V-1-motor is different from that of F-1-motor. Proc Natl Acad Sci USA 102:17929–17933PubMedCrossRefGoogle Scholar
  40. Itoh H, Takahashi A, Adachi K et al (2004) Mechanically driven ATP synthesis by F-1-ATPase. Nature 427:465–468PubMedCrossRefGoogle Scholar
  41. Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42PubMedCrossRefGoogle Scholar
  42. Johnson RM, Allen C, Melman SD et al (2010) Identification of inhibitors of vacuolar proton-translocating ATPase pumps in yeast by high-throughput screening flow cytometry. Anal Biochem 398:203–211PubMedCrossRefGoogle Scholar
  43. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001a) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420PubMedCrossRefGoogle Scholar
  44. Kawasaki-Nishi S, Nish T, Forgac M (2001b) Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci USA 98:12397–12402PubMedCrossRefGoogle Scholar
  45. Kohori A, Chiwata R, Hossain MD et al (2011) Torque generation in F-1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys J 101:188–195PubMedCrossRefGoogle Scholar
  46. Kopecky J, Glaser E, Norling B, Ernster L (1981) Relationship between the binding of dicyclohexylcarbodiimide and the inhibition of H+-translocation in submitochondrial particles. FEBS Lett 131:208–212PubMedCrossRefGoogle Scholar
  47. Kopecky J, Dedina J, Votruba J et al (1982) Stoicheiometry of dicyclohexylcarbodiimide-ATPase interaction in mitochondria. Biochim Biophys Acta 680:80–87PubMedCrossRefGoogle Scholar
  48. Kopecky J, Guerrieri F, Papa S (1983) Interaction of dicyclohexylcarbodiimide with the proton-conducting pathway of mitochondrial H+-ATPase. Eur J Biochem 131:17–24PubMedCrossRefGoogle Scholar
  49. Kota Z, Pali T, Dixon N et al (2008) Incorporation of transmembrane peptides from the vacuolar H(+)-ATPase in phospholipid membranes: spin-label electron paramagnetic resonance and polarized infrared spectroscopy. Biochemistry 47:3937–3949PubMedCrossRefGoogle Scholar
  50. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  51. Lu YD, Qin WX, Li JJ et al (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843–6849PubMedCrossRefGoogle Scholar
  52. Lunde CS, Kubo I (2000) Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1943–1953PubMedCrossRefGoogle Scholar
  53. MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M (1998) Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 273:150–156PubMedCrossRefGoogle Scholar
  54. Masaike T, Mitome N, Noji H et al (2000) Rotation of F-1-ATPase and the hinge residues of the beta subunit. J Exp Biol 203:1–8PubMedGoogle Scholar
  55. McHenry P, Wang WLW, Devitt E et al (2010) Iejimalides A and B inhibit lysosomal vacuolar H+-ATPase (V-ATPase) activity and induce S-phase arrest and apoptosis in MCF-7 cells. J Cell Biochem 109:634–642PubMedGoogle Scholar
  56. Morimura T, Fujita K, Akita M, Nagashima M, Satomi A (2008) The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr Surg Int 24:1087–1094PubMedCrossRefGoogle Scholar
  57. Nakanishi-Matsui M, Kashiwagi S, Hosokawa H et al (2006) Stochastic high-speed rotation of Escherichia coli ATP synthase F-1 sector—the epsilon subunit-sensitive rotation. J Biol Chem 281:4126–4131PubMedCrossRefGoogle Scholar
  58. Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta 1797:1343–1352PubMedCrossRefGoogle Scholar
  59. Nakano M, Imamura H, Toei M, Tamakoshi M, Yoshida M, Yokoyama K (2008) ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J Biol Chem 283:20789–20796PubMedCrossRefGoogle Scholar
  60. Nishi T, Forgac M (2002) The vacuolar (H +)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103PubMedCrossRefGoogle Scholar
  61. Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M (2002) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99:13448–13452PubMedCrossRefGoogle Scholar
  62. Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 9:845–855PubMedCrossRefGoogle Scholar
  63. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F-1-ATPase. Nature 386:299–302PubMedCrossRefGoogle Scholar
  64. Noumi T, Beltran C, Nelson H, Nelson N (1991) Mutational analysis of yeast vacuolar H+-ATPase. Proc Natl Acad Sci USA 88:1938–1942PubMedCrossRefGoogle Scholar
  65. Ohsumi Y, Uchida E, Anraku Y (1983) Proton-translocating adenosine-triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. Cell Struct Funct 8:466Google Scholar
  66. Okuno D, Iino R, Noji H (2011) Rotation and structure of FoF1-ATP synthase. J Biochem 149:655–664PubMedCrossRefGoogle Scholar
  67. Otero-Rey EM, Somoza-Martin M, Barros-Angueira F, Garcia–Garcia A (2008) Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol 44:193–199PubMedCrossRefGoogle Scholar
  68. Owegi MA, Carenbauer AL, Wick NM et al (2005) Mutational analysis of the stator subunit E of the yeast V-ATPase. J Biol Chem 280:18393–18402PubMedCrossRefGoogle Scholar
  69. Padilla-Lopez S, Pearce DA (2006) Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J Biol Chem 281:10273–10280PubMedCrossRefGoogle Scholar
  70. Pali T, Finbow ME, Holzenburg A, Findlay JBC, Marsh D (1995) Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry 34:9211–9218PubMedCrossRefGoogle Scholar
  71. Pali T, Finbow ME, Marsh D (1997) Membrane assembly of the 16-kDa V-ATPase proteolipid subunit from spin-lattice relaxation enhancements in spin label ESR. Biophys J 72:TUAM7Google Scholar
  72. Pali T, Finbow ME, Marsh D (1999) Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR. Biochemistry 38:14311–14319PubMedCrossRefGoogle Scholar
  73. Pali T, Dixon N, Kee TP, Marsh D (2004a) Incorporation of the V-ATPase inhibitors concanamycin and indole pentadiene in lipid membranes. Spin-label EPR studies. Biochim Biophys Acta 1663:14–18PubMedCrossRefGoogle Scholar
  74. Pali T, Whyteside G, Dixon N et al (2004b) Interaction of inhibitors of the vacuolar H+-ATPase with the transmembrane V-o-sector. Biochemistry 43:12297–12305PubMedCrossRefGoogle Scholar
  75. Pali T, Finbow ME, Marsh D (2006) A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus-revealed by EPR spectroscopy. Biochim Biophys Acta 1758:206–212PubMedCrossRefGoogle Scholar
  76. Panke O, Rumberg B (1997) Energy and entropy balance of ATP synthesis. Biochim Biophys Acta 1322:183–194CrossRefGoogle Scholar
  77. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia–Garcia A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713PubMedCrossRefGoogle Scholar
  78. Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275:23654–23660PubMedCrossRefGoogle Scholar
  79. Rondelez Y, Tresset G, Nakashima T et al (2005) Highly coupled ATP synthesis by F-1-ATPase single molecules. Nature 433:773–777PubMedCrossRefGoogle Scholar
  80. Saito T, Schlegel R, Andresson T, Yuge L, Yamamoto M, Yamasaki H (1998) Induction of cell transformation by mutated 16 K vacuolar H+-ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17:1673–1680PubMedCrossRefGoogle Scholar
  81. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Muller DJ (2000) Structural biology—proton-powered turbine of a plant motor. Nature 405:418–419PubMedCrossRefGoogle Scholar
  82. Sekiya M, Hosokawa H, Nakanishi-Matsui M, Al-Shawi MK, Nakamoto RK, Futai M (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F-1 rotation. J Biol Chem 285:42058–42067PubMedCrossRefGoogle Scholar
  83. Serrano R (1978) Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem 22:51–63PubMedCrossRefGoogle Scholar
  84. Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576PubMedCrossRefGoogle Scholar
  85. Stahlberg H, Muller DJ, Suda K et al (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233PubMedCrossRefGoogle Scholar
  86. Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705PubMedCrossRefGoogle Scholar
  87. Strasser B, Iwaszkiewicz J, Michielin O, Mayer A (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30:4126–4141PubMedCrossRefGoogle Scholar
  88. Supino R, Petrangolini G, Pratesi G et al (2008) Antimetastatic effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical studies. J Pharmacol Exp Ther 324:15–22PubMedCrossRefGoogle Scholar
  89. Takeda M, Suno-Ikeda C, Shimabukuro K, Yoshida M, Yokoyama K (2009) Mechanism of inhibition of the V-type molecular motor by tributyltin chloride. Biophys J 96:1210–1217PubMedCrossRefGoogle Scholar
  90. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New YorkGoogle Scholar
  91. Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA (2001) Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase. Proc Natl Acad Sci USA 98:898–902PubMedCrossRefGoogle Scholar
  92. Ubbink-Kok T, Boekema EJ, van Breemen JF, Brisson A, Konings WN, Lolkema JS (2000) Stator structure and subunit composition of the V(1)/V(0) Na(+)-ATPase of the thermophilic bacterium Caloramator fervidus. J Mol Biol 296:311–321PubMedCrossRefGoogle Scholar
  93. Uchida E, Ohsumi Y, Anraku Y (1985) Purification and properties of H+-translocating, Mg-2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 260:1090–1095PubMedGoogle Scholar
  94. Ueno H, Suzuki T, Kinosita K, Yoshida M (2005) ATP-driven stepwise rotation of FOF1,-ATP synthase. Proc Natl Acad Sci USA 102:1333–1338PubMedCrossRefGoogle Scholar
  95. Van Walraven HS, Strotmann H, Schwarz O, Rumberg B (1996) The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett 379:309–313PubMedCrossRefGoogle Scholar
  96. Wada Y, Sambongi Y, Futai M (2000) Biological nano motor, ATP synthase FoF1: from catalysis to gamma epsilon c(10–12) subunit assembly rotation. Biochim Biophys Acta 1459:499–505PubMedCrossRefGoogle Scholar
  97. Wang YR, Inoue T, Forgac M (2004) TM2 but not TM4 of subunit c″ interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J Biol Chem 279:44628–44638PubMedCrossRefGoogle Scholar
  98. Whyteside G, Meek PJ, Ball SK et al (2005) Concanamycin and indolyl pentadieneamide inhibitors of the vacuolar H+-ATPase bind with high affinity to the purified proteolipid subunit of the membrane domain. Biochemistry 44:15024–15031PubMedCrossRefGoogle Scholar
  99. Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810PubMedCrossRefGoogle Scholar
  100. Xie P (2009) On chemomechanical coupling of the F(1)-ATPase molecular motor. Biochim Biophys Acta 1787:955–962PubMedCrossRefGoogle Scholar
  101. Yasuda R, Noji H, Kinosita K, Motojima F, Yoshida M (1997) Rotation of the gamma subunit in F-1-ATPase; evidence that ATP synthase is a rotary motor enzyme. J Bioenerg Biomembr 29:207–209PubMedCrossRefGoogle Scholar
  102. Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase. Nature 410:898–904PubMedCrossRefGoogle Scholar
  103. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • Csilla Ferencz
    • 1
  • Pál Petrovszki
    • 1
  • Zoltán Kóta
    • 1
  • Elfrieda Fodor-Ayaydin
    • 1
    • 5
  • Lajos Haracska
    • 2
  • Attila Bóta
    • 3
  • Zoltán Varga
    • 3
  • András Dér
    • 1
  • Derek Marsh
    • 4
  • Tibor Páli
    • 1
  1. 1.Institute of BiophysicsBiological Research CentreSzegedHungary
  2. 2.Institute of GeneticsBiological Research CentreSzegedHungary
  3. 3.Department of Biological Nanochemistry, Institute of Molecular PharmacologyResearch Centre for Natural SciencesBudapestHungary
  4. 4.Max Planck Institute for Biophysical ChemistryGöttingenGermany
  5. 5.Institute of BiochemistryBiological Research CentreSzegedHungary

Personalised recommendations